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Inflammatory bowel disease pathobiology: the role of the 
interferon signature
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Abstract The pathogenesis of inflammatory bowel disease (IBD) is still unclear, but includes both inflammatory 
and autoimmune reactions. Current methodological approaches could better elucidate the cytokine 
pathways and the genetics involved in the etiopathogenesis of this disease. Interferons (IFNs) are 
cytokines that play a key role in autoimmune/inflammatory disorders because of their pro- and anti-
inflammatory properties as well as their immunoregulatory functions. An increased expression of 
IFN-regulated genes, widely known as an IFN signature, has been reported in blood and tissue from 
patients with autoimmune disorders. In this review, we present the function as well as the clinical 
and therapeutic potential of the IFN signature. Current data demonstrate that the IFN signature can 
be used as a biomarker that defines disease activity in autoimmune diseases, although this has not 
been thoroughly studied in IBD. Consequently, further investigation of the IFN signature in IBD 
would be essential for a better understanding of its actions.
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Inflammatory bowel disease (IBD)

IBD, including Crohn’s disease (CD) and ulcerative colitis 
(UC), is a complicated, chronic, relapsing and heterogeneous 
disease induced by environmental, genomic, microbial, and 
immunological factors [1]. CD is a debilitating and incurable 
chronic idiopathic inflammatory disease of the intestine and is 
showing an increasing incidence in developing countries [2]. 
CD is characterized by ulceration and inflammation of the 
intestinal mucosa, which may affect the whole gastrointestinal 
tract, but mainly the distal small intestine. Typical characteristics 
of CD include discontinuous, transmural inflammation of the 
bowel wall, and the presence of granulomas, fistulas, strictures, 
and lymphoid aggregates [3]. UC is a chronic, idiopathic 
inflammatory disease that affects the colon. It is characterized 
by relapsing and remitting mucosal inflammation, starting in 
the rectum and extending to proximal segments of the colon. 

UC is limited to the colon and only affects its innermost lining, 
while CD can develop anywhere in the gastrointestinal tract in 
all the layers of the bowel walls [4].

IBD therapy aims to induce and maintain clinical 
and endoscopic remission. Current treatments include 
aminosalicylate drugs and antibiotics for mild-to-moderate 
IBD, conventional anti-inflammatory agents (corticosteroids), 
immunosuppressants (thiopurines and methotrexate) and 
biologic therapy for moderate-to-severe disease. Recent data, 
however, suggest that the early initiation of more aggressive 
treatment, such as biologic therapy, can modify disease 
progression and may lead to less damage. Immunomodulatory 
drugs are often used in combination with biologics in IBD patients 
with severe disease for the maintenance of remission [5]. Apart 
from these well-studied treatments, systemic administration of 
type  I interferon ([IFN], e.g.,  IFN-α, IFN-β) in IBD patients 
has been evaluated for the suppression of disease burden, 
with controversial results. Immunoregulatory therapy with 
IFN type  I can inhibit production of tumor necrosis factor 
(TNF) and IFN-γ, antagonize the IFN-γ signaling pathway, 
and increase production of the anti-inflammatory cytokine 
interleukin (IL)-10 [6,7]. IFN-β also has an immunoregulatory 
action by enhancing regulatory T-lymphocyte and natural 
killer-cell activity [8,9].

IBD and immunity

IBD is characterized as an immune-mediated disease, 
although it still remains unknown whether this autoimmunity 
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has a direct pathogenic effect in CD or in UC, despite the 
presence of autoantibodies that react to bacterial antigens [10].

Innate immunity

The role of innate immunity in the pathogenesis of IBD 
has been described since the discovery of mutations in 
the NOD2/CARD15 gene. The NOD2/CARD15 gene is an 
intracellular bacterial sensor, with reduced expression in the 
presence of the 3020insC mutation, leading to a vulnerability 
to bacterial infections in IBD [11]. NOD2/CARD15 mutations 
result in reduced α-defensin expression. On the other 
hand, β-defensin levels are increased as a result of enteric 
inflammation; this is not the case for CD regarding HBD-2 
and HBD-3 [12,13]. The combination of NOD2 mutations 
and the decreased defensin expression may lead to defective 
resistance against intestinal microorganisms and might result 
in inflammation of the mucosa [14].

Toll-like receptors (TLRs) also have an important role in 
innate immunity, through their ability to detect both normal and 
pathological microbes and to regulate the host’s antimicrobial 
response [15]. Abnormal TLR expression or function has been 
implicated in the development or persistence of intestinal 
inflammation. TLR4 has been found to be upregulated in CD 
epithelial cells, while TLR3 is downregulated [16]. TLR4 and 
TLR9 polymorphisms have also been reported in IBD, but their 
functional significance is poorly understood [17,18].

Because of the involvement of both NOD2 and TLRs in 
the recognition of and response to bacteria, they may have 
a reciprocal interaction that could be dysfunctional in IBD. 
Macrophages homozygous for NOD2 mutations in CD patients 
show defective production of IL-1 and IL-8 when stimulated 
with muramyl dipeptide (MDP) or TNF-α [19]. In addition, 
peripheral blood mononuclear cells from double-mutant 
patients failed to interact with MDP and TLR ligands, leading 
to increased TNF-α and IL-1β production [20]. In this way, the 
generalized inability of the innate immune response to control 
via pattern recognition receptors may contribute to IBD, 
particularly to CD [14].

Adaptive immunity

IBD is characterized by increased production of systemic and 
mucosal antibodies and an altered amount of immunoglobulin 
classes and subclasses due to the chronic inflammation of 
the intestine [21-23]. Additionally, IgG1 antibodies against 
epithelial cells in the colon are highly produced in UC, but not 
in CD, possibly demonstrating an autoimmune pathway in this 
case [24]. Lately, adaptive immunity in IBD has been focused 
on the subsets of T-helper (Th) cells (a lymphocyte subtype) 
and their soluble regulators, which are important elements of 
immune responses [25]. They are involved in the activation of 
other cells of the immune system and determine the specificity 
of antibodies secreted by B-cells [26]. Following proliferation, 
a Th cell is differentiated into Th1, Th2, or Th17 [27]. Th1 cells 

mediate the production of proinflammatory cytokines, 
such as IFN-γ, TNF-α, and IL-12, whereas Th2  cells lead to 
the production of anti-inflammatory cytokines, including 
IL-4, IL-5, IL-6, and IL-10, which constitute the humoral 
immune response. There is an interaction between Th1 and 
Th2 lymphocytes. Th1 cytokines lead to the production of 
Th1 cells and inhibit Th2 cells. Conversely, Th2 cytokines lead 
to the production of Th2 cells and inhibit Th1 cells. In healthy 
individuals, there is an equilibrium between the quantities 
of Th1 and Th2 cells. The development of immune-mediated 
disorders such as CD is closely linked to a type  1 immune 
response causing chronic inflammation of the intestine. CD 
is characterized by the accumulation of Th1 cells and UC by 
the accumulation of Th2 cells [28]. The most recent class of Th 
cells to be revealed is Th17 cells, differentiated in the presence 
of IL-6, IL-1β, IL-21, and IL-23 [29], and may secrete IL-17A, 
IL-17F, IL  -21, IL-22, IL-26, and chemokine CCL20 [30]. 
The inflamed mucosa of CD patients is characterized by a 
multi-complex communication network between cytokines, 
responsible for the changes that occur in immune level [31]. 
An example of this complicated, unstable process has been 
described in CD, with the transition from the Th1 response to 
a mixed phenotype of Th1/Th17 [32].

A great number of types of cytokine dysregulation 
have been described, in which proinflammatory and 
immunoregulatory molecules are included [25]. In CD 
patients, intestinal CD4+ T cells produce increased numbers 
of IFN-γ, while the transcription factor of Th1 cells, T-bet, is 
also overexpressed [33]. Mucosal macrophages also produce 
remarkable levels of IL-12 and IL-18 [34,35]. Regarding UC, 
different immunological abnormalities have been observed, 
where natural killer T (NKT) cells produce large amounts of 
IL-13, and T cells of mucosa produce more IL-15, proliferate 
less and die more than healthy cells [36].

Genetics

Genome-wide association studies (GWAS) have been 
crucial in the recognition of over 230 disease loci linked to 
IBD [37]. The most strongly and consistently implicated loci are 
associated with intracellular bacteria killing, innate (CARD15/
NOD2, IRGM, IL-23R, LRRK2, and ATG16L1) and adaptive 
immune responses (IL-23), and the Th17 cell pathway (IL-23R, 
IL-12B, STAT3, JAK2, and TYK2) [38]. Dendritic cells (DCs) 
followed by CD4 T, natural killer (NK), and NKT cells showed 
the highest enrichment of these susceptibility gene sets when 
tested in a panel of immune cell subsets, indicating a major role 
for these cells in CD pathogenesis [39].

Most of the loci are common for IBD, although some of 
them are unique for either CD or UC. NOD-like receptors 
(NOD2), autophagy genes (ATG16L1, IRGM) and intelectins 
(ITLN1) present high specificity for CD. Considering UC, gene 
loci involved in regulatory pathways, such as IL-10 and ARPC2, 
and in intestinal epithelial cell function, such as ECM1 and 
E3 ubiquitin ligase, seem to be disease-specific. Furthermore, 
the association of the human leukocyte antigen/major 
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histocompatibility complex region appears to be stronger 
with UC rather than CD, a genetic feature of IBD shared with 
several autoimmune diseases [40-42].

GWAS and the meta-analysis of loci have been crucial in 
the specification of over 230 genetic susceptibility loci linked 
to IBD [37]; some of these genes are involved in immunity 
and in barrier function [39]. Various single-nucleotide 
polymorphisms (SNPs) have been found in genes related to 
pathogenic cytokine pathways, for example the Th17/IL-23 
pathway, IL-10 pathway, and type  I IFN signaling [43]. The 
relevant pathways could not be precisely determined only from 
the genetic data, as most of the signaling mediators are shared 
between different cytokine signaling cascades.

Many of the IBD-associated genes are involved in the 
type I IFN signaling pathway. The rs2284553 SNP is associated 
with the IFNGR2 gene and with the IFNAR1. SNPs in JAK2, 
TYK2, STAT1 and STAT3 genes affect the JAK/STAT signaling 
pathway, deregulating the action of several cytokines, such as 
IL-22, IL-10, and type I and type III IFN [39]. Moreover, MDA5 
or IRF4 gene polymorphisms can modulate the production of 
type  I and type  III IFN [39]. Although studies in mice show 
that minor alterations in type  I IFN may contribute to the 
imbalance of the immune response in the lamina propria, the 
exact role of type I IFN in IBD pathology remains unclear [44].

IFNs

IFNs are cytokines that have antiviral activity. They are 
classified into 3 categories: type I IFNs (IFN-α, IFN-β and other 
less explored members), type II IFNs (IFN-γ), and type III IFNs 
(IFN-λ1, IFN-λ2, IFN-λ3 and IFN-λ4 in humans) [45,46].

The type I multigene family consists of structurally related 
IFNs, such as IFN-α, IFN-β, IFN-ω, IFN-ε, IFN-κ, IFN-δ, 
IFN-ζ, and IFN-τ. [45]. The best-studied type I IFN is the IFN-α 
family, which is encoded by 13 homologous genes [47]. These 
cytokines are produced after the stimulation of pattern-
recognition receptors, as part of the innate immune antiviral 
response [48]. Data indicate that the initial production of 
IFN-β and IFN-α4 is dependent upon IRF3 phosphorylation 
and NF-κB activation [49]. The primary wave of type  I IFN 
then induces IRF7 phosphorylation, leading to a positive 
feedback loop to increase the release of type I IFN [50].

Type  II IFN (also known as IFN-γ), is predominantly 
produced by NK and NKT cells, as well as by CD4 and CD8 
T-lymphocytes. Along with its antiviral activity, IFN-γ also 
acts against intracellular bacterial infections and tumor 
progression [51]. There is also evidence to show that type  I 
IFN, IL-12, IL-15 and IL-18 are able to induce production of 
IFN-γ by NK cells [52].

Type  III IFNs are more similar in structure to the IL-10 
family than to the other IFN subgroups, but functionally they 
are similar to type I and type II IFN, as they also contribute to 
antiviral responses and induce the activation of many common 
genes [53].

All type  I IFN members bind to the same heterodimer, 
expressed on most cells: the type  I IFN receptor (IFNAR). 

IFNAR is composed of two subunits, IFNAR1 and 
IFNAR2 [47]. These receptors are endocytosed and activate 
their related tyrosine kinases, tyrosine kinase 2 (Tyk2) and 
Janus kinase 1 (JAK1), when bound to IFN type  I [54]. The 
typical signaling cascade results in the phosphorylation of 
STAT1 and STAT2, which form a complex with IRF9, known 
as the IFN-stimulated gene factor 3 (ISGF3), leading to the 
expression of IFN-stimulated genes [54]. Apart from ISGF3, 
type  I IFNs can induce phosphorylation and dimerization of 
STAT3, STAT4, STAT5 and STAT6 and activate Rap1, CrkL, 
Map kinases, IRS-1, IRS-2, Vav, RAC1 and PI3-kinase signal 
transduction pathways [54-59]. IFN-β has been shown to act 
via the IFNAR1, in an IFNAR2-independent way, through a 
non-canonical pathway [60].

The 2 other categories of the IFN family, type II and type III, 
display little similarity to type I IFNs and signal through their 
own cognate receptors. All IFNs act through various signal 
transduction pathways, with Janus kinases (JAK)/signal 
transducer and activator of transcription (STAT) pathway 
being the best-described [61]. Although type  II IFN shares 
a similar classification with type  I IFN, it activates different 
signal receptors that have other effects than those of type I IFN. 
IFN-γ signals through the IFN-γ receptor (IFNGR), composed 
of IFNGR1 and IFNGR2 subunits. In the classical signaling 
pathway, binding of IFN-γ to IFNGR activates JAK1 and JAK2 
and leads to homodimerization and phosphorylation of STAT1 
at tyrosine 701 [62]. However, like type  I IFN, alternative 
signaling pathways have also been suggested for IFN-γ, such as 
STAT4, Erk1/2, Pyk2 and CrkL [63].

Type III IFNs bind to 2 receptors unique to this IFN type 
that have limited expression in epithelial cells: the low-affinity 
receptor subunit (IL-10R2) and the high-affinity receptor 
subunit (IFN-λ receptor 1, IFNLR1) [64]. These receptors 
trigger the same signaling JAK/STAT pathway as type  I IFN 
receptors and induce a high number of ISGs [65]. All the types 
of IFNs are summarized in Table 1.

The role of IFNs has been widely studied in autoimmune 
diseases; however, there are not many data concerning IFNs 
and IBD. IFNs have multiple direct and indirect effects on 
adaptive immunity. IFN-α/β activates NK cells and DCs, with 
increased expression of major histocompatibility complex 
class I (MHCI) and other molecules, such as CD40, CD80 and 
CD86. Type I IFN affects DC targeting in peripheral lymphoid 
organs by inducing the production of several chemokines, 
including CXCL8, CXCL9, CXCL10, CXCL11 and their 
receptors. It boosts the production of IL-12, IL-15, IL-18 
and IL-23 by DCs and the heightened expression of B-cell 
activating factor (BAFF) and a proliferation-inducing ligand 
(APRIL). Furthermore, type  I IFN stimulates macrophage 
development and inducible nitric oxide (NO) synthase 
expression in systemic lupus erythematosus (SLE) [66]. IFN-α 
overproduction has been described in SLE patients; immune 
complexes containing DNA or RNA in the serum of SLE 
patients may explain this increased production [67]. Immature 
plasmacytoid DCs produce increased levels of IFN that can 
also induce monocyte maturation into DCs [68].

The stimulatory or inhibitory role of type  I IFN has 
been described in various other autoimmune disorders. For 
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example, type I IFN has been suggested as a negative regulator 
in rheumatoid arthritis (RA), type I insulin-dependent diabetes 
mellitus, multiple sclerosis (MS), and acute encephalitis. 
However, IFN-β is used to treat relapsing/remitting forms of 
MS. Other examples are those of thyroiditis, some forms of 
autoimmune hemolytic anemia, and Behçet’s disease [67].

Genetic studies in primary Sjögren’s syndrome (pSS) report 
polymorphisms in the IRF5 gene, whose transcripts may induce 
the stimulation of IFN-β [69]. A  few studies have correlated 
the increased circulating IFN-α levels with autoimmune/
autoimmune-featured diseases such as pSS, diffuse systemic 
sclerosis and interstitial lung disease [70]. In dermatomyositis, 
immunohistochemistry methods revealed that IFN-α/β induce 
the myxovirus resistance protein A in the perifascicular muscle 
fibers and in capillary cells [71]. IFN-α/β has also been detected 
in the synovial fluid and tissue of patients with RA. Subsequent 
treatment approaches using type I IFN have had controversial 
outcomes in both murine models and humans with RA [72].

It is known that, in healthy individuals, TNF downregulates 
IFN-α [73], and this leads to an initial theory that the reduction 
in TNF-mediated IFN-α secretion triggers autoimmunity. 
However, several studies showed that both IFN-α and TNF are 
increased in SLE patients and, furthermore, that their levels 
were indicative of the disease progression [74-78]. It seems that 
the increased levels of both TNF and IFN-α contribute to the 
development of autoimmunity [79].

There are studies indicating that type I IFN treatment often 
has an unpredictable outcome in IBD patients. Some pilot 
studies have shown that type I IFN may improve the condition 
of IBD patients [80,81], although some clinical trials found that 
there is no beneficial outcome of IFN-β1a, IFN-α or IFN-β1 
treatment in terms of disease remission [82-84]. According to 
Mannon et al, UC patients characterized as responders to IFN-
β1a therapy presented significant lower levels of mucosal T-cell 
IL-13 production after treatment. Primary non-responders to 
IFN-β1a treatment were associated with increased quantities 
of IL-17 and IL-6, while no other significant decrease in the 
production of inflammatory cytokines was noticed after 
clinically and endoscopically effective therapy [85]. We can 
conclude that, according to the current knowledge concerning 
type I IFN treatment, no statistical benefit in disease amelioration 
has been found, although the effect of the treatment seems to be 
associated with the Th profiles of each patient.

Proinflammatory and anti-inflammatory cytokines, type  I 
IFN included, are significant players in the maintenance of gut 
microbiota, given their immunoregulatory effects on the growth 
and renewal of intestinal epithelial cells (IECs) [86-88]. Type  I 
IFN is mainly expressed by lamina propria CD11c+ DCs in the 
intestine [89]; more specifically, these cells express IFN-α5 and 
IFN-α9 mRNA, but not IFN-α4 [90]. Moreover, it has been found 
that CD11c+ DCs express type I IFN-induced genes, including 
2’-5’ oligoadenylate synthetase (OAS), OAS-like family members, 
IRF5, IRF7, CXCL10, RNase L and PKR, as well as IL-15α [91].

IFN signature in IBD

An increased expression of IFN-regulated genes, widely 
known as an IFN signature, has been reported in blood and 
tissue from patients with autoimmune disorders. The IFN 
signature has been studied in multiple autoimmune diseases, 
such as SLE, subacute cutaneous lupus erythematosus (SCLE), 
discoid lupus erythematosus (DLE), myositis, pSS, systemic 
sclerosis (SSc), scleroderma, and RA [92-95].

In SLE, the IFN signature is correlated with disease 
activity and severity and can be modulated with appropriate 
therapy [94]. Bauer et al suggest that IFN-induced chemokines 
can be used as possible biomarkers for predicting SLE [96,97]. 
The IFN-regulated gene signature is increased in peripheral 
blood cells and is correlated with disease activity in SCLE 
and DLE [95]. Furthermore, higher expression levels of 
IFN-λ1 in serum and tissues induce type  I IFN-regulated 
genes in cutaneous lupus erythematosus [98]. The IFN type I 
signature also defines a subset of RA patients, with a specific 
biomolecular phenotype, represented by increased activity 
of the innate defense system, coagulation and complement 
cascades, and fatty acid metabolism [99]. Similarly, the IFN 
signature can identify only a subgroup of pSS patients: those 
who present higher activity of the disease and a more obvious 
activation of the immune system, including higher BAFF 
mRNA expression [100]. However, the IFN signature does 
not have such a strong association with dermatomyositis, 
polymyositis, SSc and RA, as with SLE [94,101].

Extended research by Smiljanovic et al studied the impact 
of a large group of cytokines regulated by IFNs and TNF-α in 

Table 1 The types of interferons

IFN Type Class Receptor Cellular source Biological effect

I α, β, ω, ε, κ, δ, ζ, τ IFNAR1, IFNAR2 pDCs, Fibroblasts Activates: NK cell, DC, macrophage 
development and chemokines production.
Triggers/activates: Rap1, CrkL, Map 
kinases, IRS-1, IRS-2, Vav, RAC1 and 
PI3- kinase signal transduction pathways

II γ IFNGR1, IFNGR2 NK cells, CD4 and CD8 cells, 
macrophages, DCs, B cells

Triggers: JAK/STAT, STAT4, Erk1/2, 
Pyk2, CrkL pathway

III λ1, λ2, λ3, λ4 IFNLR1 pDCs Triggers JAK/STAT pathway, induces ISGs

IFN, interferon; IFNAR1, interferon α/β receptor subunit 1; IFNAR2, interferon α/β receptor subunit 2; IFNGR1, interferon-gamma receptor subunit 1; IFNGR2, 
interferon-gamma receptor subunit 2; IFNLR1, Interferon lambda receptor 1; pDCs, plasmacytoid dendritic cells; NK cells, natular killer cells; DC, dendritic cells; 
ISGs, interferon-stimulated genes
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SLE and RA. Specifically the IFN-α2α signature included the 
upregulation of the following probe sets: CCL2, CCL8, CD164, 
CXCL10, CXCL11, FAS, IFI16, IFI27, IFI44, IFI44L, IL-15, 
IL-15RA, MX1, MX2, OAS1, OAS2, OAS3, OASL, SIGLEC1, 
SSB, STAT1, STAT2, STAT3 and TNFSF10, and downregulation 
of the following probe sets: CENTD2, CYP1B1, GPX4, ID2, 
IER3, IRS2, JUN, KLF13, KLF2, KLF4, PTAFR, TNFAIP2 and 
TNFRSF10B in SLE. A pronounced IFN-α2α signature was also 
identified in most RA patients. The IFN-α2α imprint in RA 
included the upregulation of CD163, CD55, CITED2, IL6ST, 
FOSL2, MAFF, ATF3 and MT2A and the downregulation 
of CCNG2, CXCR4, ICAM2, FADD, GPX3, NGRN, PURA, 
TNFSF8 and TP53. The network that characterizes an IFN-γ 
signature in SLE contains the following genes: STAT1, STAT3, 
IFI16, IRF7, CXCL10 and TNFSF10. In contrast, the network 
that demonstrates an IFN-γ imprint in RA contains genes like 
CCL3, CCL4, CXCR4 and ATF3 [100].

Appendicitis and appendectomy (AA), when occurring 
at an early age, have been found to be protective against the 
development of colitis in adulthood [102]. Cheluvappa et al 
showed that AA influence the expression of IFN-associated 
genes using microarray and gene set enrichment analysis 
in an AA model [103], explaining its beneficial role in 
trinitrobenzenesulfonic acid (TNBS) colitis. In this study, the 
expression of 46 distal colonic, IFN activity-associated genes 
was measured 3 and 28 days after AA. At day 3 after AA, IRF7 
and IFI35 were significantly upregulated, while IFNK and 
IFRD2 were significantly downregulated. At day 28 after AA, 
IFNZ, IFIT1, IFIT2, IFIT3, IRF9, IFIH1 and IFI44 were found 
significantly upregulated. However, IRF2BP1, IRF2BP2 and 
IFI30 were significantly downregulated [104]. The only IFN 
gene that was upregulated at any time point was IFNZ [105]. 
The IFNz gene in mice exhibits immunomodulatory and 
antiviral effects, initiated by its IFN-α/β receptor binding [105]. 
These data agree with another study that showed imiquimod-
induced colonic upregulation of IFN activity-associated genes 
or their gene sets (IFIT1, IFIT2, IFIT3, IRF7, IFI44 and IFIH1) 
that provide protection against DSS colitis [106]. A  similar 
study investigated the role of several chemokines in colitis after 
AA. At day 28 after AA, CCL5 was significantly upregulated, 
whereas CCL20 was significantly downregulated. Interestingly, 

CXCL11 was found to be significantly upregulated at days 3 
and 28 after AA [107]. The IFN-regulated genes in the IBD 
model, SLE and RA are presented in Table 2.

IFIT1, IFIT2, and IFIT3 are induced by IFNs, virus 
infections, and several molecular patterns, interfere 
with multiple protein–protein interactions, and present 
antiproliferative and immunoregulatory properties [108,109]. 
The IRF family of transcription factors that bind with DNA 
has the ability to recognize and bind to consensus gene 
sequences (IFN, stimulated response elements and virus-
response elements), helping in IFN production, IFN/feedback-
inhibition, management of cell growth, T-/B-  lymphocyte 
activity and IFN-induced gene expression [110,111]. 
Specifically, IRF7 is a positive IFN regulator and a key mediator 
of the IFN positive feedback amplification loop, while IRF9 
contributes toward a heterotrimeric complex, which induces 
IRF7 via JAK/STAT signaling, and autocrine IFN-receptor 
activation [110]. IFI44 binds intracellular GTP and prevents 
cells from proliferating [112], while IFI30 is an enzyme 
of lysosomal thiol reductase. It is expressed from antigen-
presenting cells (APCs) and is responsible for processing the 
antigen through the decrease of bisulfide bonds of endocytosed 
proteins [113]. IFI35 is a leucine zipper protein, expressed in 
fibroblasts, macrophages and epithelial cells [114]. IFIH1 is an 
RNA helicase involved in induction of translation, in nuclear/
mitochondrial splicing and ribosome assembly [115]. The IFN 
IFNz in mice exhibits immunoregulatory and antiviral effects, 
initiated by its IFN-α/β receptor binding [105]. Considering 
the chemokines involved in the IFN signature, the chemokine 
CCL5 is a chemoattractant for monocytes, memory Th cells, 
and eosinophils [116], and is induced by IFN-γ [117]. The 
chemokine CCL20 is also induced by IFN-γ [117] and is 
chemoattractant for lymphocytes and neutrophils, which can 
help lymphoid tissues of mucosa to attract lymphocytes and 
DCs to epithelial cells [118], while IFN-β and IFN-γ induce 
the chemokine CXCL11. CXCL11 is a chemoattractant for IL-
activated T-cells [119].

There are not many studies concerning the correlation of the 
IFN-regulated gene expression and the response to anti-TNF 
therapy. The aforementioned study of Palucka et al suggests the 
upregulation of IFN-α regulated genes in circulating leukocytes 

Table 2 Interferon (IFN)-regulated genes in the inflammatory bowel disease (IBD) model, systemic lupus erythematosus (SLE) and rheumatoid 
arthritis (RA)

Diseases IFN signature

Upregulated genes Downregulated genes

IBD model 
(after appendicitis and  appendectomy)

IRF7, IFI35, IFNZ, IFIT1, IFIT2, IFIT3, IRF9, IFIH1, IFI44, 
IFIT1, IFIT2, IFIT3, IRF7, IFI44, and IFIH1, CCL5, CXCL11

IFNK, IFRD2, IRF2BP1, 
IRF2BP2, IFI30, CCL20

SLE CCL2, CCL8, CD164, CXCL10, CXCL11, FAS, IFI16, IFI27, 
IFI44, IFI44L, IL-15, IL-15RA, MX1, MX2, OAS1, OAS2, OAS3, 
OASL, SIGLEC1, SSB, STAT1, STAT2, STAT3, TNFSF10

CENTD2, CYP1B1, GPX4, 
ID2, IER3, IRS2, JUN, KLF13, 
KLF2, KLF4, PTAFR, TNFAIP2, 
TNFRSF10B

RA CD163, CD55, CITED2, IL6ST, FOSL2, MAFF, ATF3, and 
MT2A

CCNG2, CXCR4, ICAM2, FADD, 
GPX3, NGRN, PURA, TNFSF8, 
TP53

IFN, interferon; IBD, inflammatory bowel disease; SLE, systemic lupus erythematosus; RA, rheumatoid arthritis
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of patients with systemic onset juvenile idiopathic arthritis who 
receive anti-TNF therapy [73]. A  study performed in 33 RA 
patients revealed that increased IFN response gene activity is 
associated with a poor clinical response to TNF blockade, most 
evident 2 months after the initiation of treatment. Interestingly, 
the combination of five IFN response genes (OAS1, LGALS3BP, 
Mx2, OAS2 and SERPING1) into one IFN response gene set 
improved the predictive accuracy compared to OAS1 and 
LGALS3BP expression separately [120].

Although IBD is not considered as an autoimmune disease, 
it may trigger autoimmunity caused by the increased antigenic 
load and mucosal immune activation. It is well established 
that both innate and adaptive immunity play a major role 
in IBD development. Several genetic alterations are shared 
between IBD and autoimmune diseases. Furthermore, chronic 
intestinal inflammation presented in IBD could trigger 
autoimmunity. IBD-related inflammation consists of a variety 
of abnormalities in humoral and cell-mediated immunity, and 
a generalized enhanced reactivity against intestinal bacteria. 
The IFN signature in autoimmune diseases represents a useful 
tool as a biomarker of disease progression and treatment 
efficiency. Thus, the IFN signature in IBD could serve as an 
early predictor of disease activity and progression, as well as a 
supplementary therapeutic target [121,122].

Concluding remarks

Many autoimmune diseases present an IFN signature in cells 
from peripheral blood and tissues. Current data demonstrate 
that the IFN signature can be used as a biomarker that defines 
disease activity. In RA, the IFN signature may be used in the 
prediction of treatment response to some biological drugs, 
while inhibition of the IFN signature in other autoimmune 
disorders, such as SLE, could have a potential role in clinical 
practice. The IFN signature in IBD has not been thoroughly 
studied compared to autoimmune diseases. For this reason, 
further investigation of the IFN signature in IBD would be 
essential for a better understanding of its actions.
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