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Gastrointestinal dysmotility in critically ill patients
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Abstract Gastrointestinal (GI) motility disorders are commonly present in critical illness. Up to 60% of 
critically ill patients have been reported to experience GI dysmotility of some form necessitating 
therapeutic intervention. It has been attributed to various factors, related to both the underlying 
disease and the therapeutic interventions undertaken. The assessment of motility disturbances 
can be challenging in critically ill patients, as the available tests used to detect abnormal motility 
have major limitations in the setting of an Intensive Care Unit. Critically ill patients with GI 
dysmotility require a multifaceted treatment approach that addresses multiple causes and utilizes 
multiple pharmacological pathways. In this review, we discuss the pathophysiology, assessment 
and management of GI dysmotility in critically ill patients.
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Introduction

Gastrointestinal (GI) motility disturbances are common 
in critical illness. Up to 60% of critically ill patients have 
been reported to experience GI dysmotility of some form 
necessitating therapeutic intervention. GI dysmotility has 
significant clinical consequences, being associated with feeding 
intolerance and malnutrition, gastroesophageal reflux (GER), 
bacterial overgrowth, and translocation. Recently, remarkable 
progress has been made in understanding the pathophysiology 
of GI motility in critical illness. Predominant motility 
abnormalities seen in Intensive Care Unit (ICU) patients 
include esophagus dysmotility, antral hypomotility, delayed 
gastric emptying, and reduced migrating motor complexes 
(Fig. 1).

The diagnosis of GI motility disturbances can be 
challenging in critically ill patients, as the available tests used 
to detect abnormal motility have significant limitations in the 
ICU setting. Recognition of the type and site of an intestinal 
motility disorder is essential to guide the therapy and improve 
the outcome (Table 1). Reintam et al studied the prognostic 

value of the GI failure (GIF) score, a combination of intra-
abdominal pressure and feeding intolerance. They showed 
that the GIF score might serve as an independent risk factor 
for ICU mortality. GIF score may also have a predictive value 
in addition to the sequential organ failure assessment score 
in outcome prediction [1]. Nevertheless, at present, there is a 
lack of evidence regarding clinical validation of the GIF score. 
Clinical symptoms such as nausea, vomiting, pain, flatus, and 
distention may be underestimated in the vast majority of ICU 
patients. Amongst the clinical signs, bowel sound auscultation 
has been proposed as a means of monitoring bowel motility 
in critically ill patients, though its sensitivity and specificity in 
identifying ileus are relatively low [2]. Over the last few years, 
novel methods of electronic monitoring have been tested, 
aiming to eliminate the background noise and standardize the 
evaluation of bowel sounds, though at present they are used 
mainly for research proposals [3].

Concerning treatment, new general and therapeutic 
measures have been introduced during the last decade. 
Prokinetic pharmacotherapies are currently the mainstay for 
the management of disordered upper GI motility.

The purpose of the current review is to discuss the 
pathophysiology, clinical manifestations, assessment, and treatment 
options of GI motility disturbances in critically ill patients.

Esophageal motility disorders

The main functions of the esophagus are to transport 
food and fluids from the pharynx to the stomach, to prevent 
the passive diffusion of substances from the food into the 
blood, and to prevent the reflux of gastric contents into the 
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esophagus.  Food transportation from the pharynx to the 
stomach is attained by coordinated peristaltic contractions 
initiated in the upper esophagus, which temporally follows a 
descending wave of inhibition. The tone of the lower esophageal 
sphincter is critical to esophageal function.  Maintenance of 
adequate sphincter tone is crucial for preventing the reflux 
of gastric contents, under positive pressures relative to 
the  esophagus due to their location in the peritoneal cavity. 
The esophagus musculature consists of skeletal muscles in 
the upper third, smooth muscles in the lower third and a 
mixture of skeletal and smooth muscles in the middle part. The 
propulsive activity of the upper esophagus is controlled by the 
nucleus ambiguus of the vagus nerve, whereas the dorsal motor 
nucleus of the vagus nerve and the myenteric plexus control 
smooth muscle peristalsis [4].

Quantitative and qualitative esophageal motility disorders 
are commonly seen in critically ill patients, mainly in the form 
of reduced esophageal contractions, reduced propulsive motor 
activity and increased retrograde contractions, attributed 
to various factors related to both the underlying disease and 
numerous pharmaceutic interventions. Kolbel et al, in a pilot 
study of 15 mechanically ventilated patients, reported that, 
regardless of the underlying disease, the administration of 
sedatives and opioids is associated with a significant reduction 
in esophageal propulsive motility, thus implicating opioids 
and sedatives in the pathophysiology of esophageal motility 
disturbances in critical illness [5].

In critically ill patients, esophagus motility disorders are 
associated with significant clinical consequences related to 
GER and impaired esophageal acid clearance. The incidence of 
GER is substantially higher in the majority of patients during 
mechanical ventilation. Numerous potential mechanisms have 
been implicated in the presence of GER during mechanical 
ventilation, including the dynamic deterioration of salivary 

clearance, the pharmacological inhibition of esophageal 
motility—mainly with sedatives and paralyzing agents—the 
presence of high gastric volume and a supine body position. 
Nasogastric intubation, a common intervention in critically ill 
patients, has been proposed as a causative factor of GER [6], and 
a positive correlation has been reported between the duration 
of nasogastric intubation and the degree of erosive esophagitis. 
Furthermore, Nind et al have shown that reflux episodes in 
mechanically ventilated patients occur predominantly as a result 
of low or absent lower esophageal sphincter pressure (LESP), 
often with a superimposed cough or strain [7]. Factors that are 
associated with low LESP, such as sepsis, hypoventilation or 
hemorrhagic shock, may also contribute to the pathogenesis 
of GER in mechanically ventilated patients  [8,9]. GER may 
significantly affect the mobility of critically  ill patients, 
leading to gastric content aspiration and erosive esophagitis. 
Approximately 50-75% of mechanically ventilated patients 
experience at least one episode of pulmonary aspiration due to 
GER during mechanical ventilation [10].

Numerous diagnostic tests have been proposed for the 
assessment of esophagus dysmotility in critically ill patients, 
though with limited feasibility in the ICU setting  [11]. 
Multichannel intraluminal impedance is a catheter-based 
method of detecting intraluminal bolus movement within 
the esophagus, using differences in resistance to alternating 
electrical current at various sites in the esophagus. In 
combination with liquid esophageal manometry, it can provide 
functional details about bolus transit in patients with esophageal 
motility abnormalities. It measures both viscous and liquid 
impedance [12], and it has been reported that the viscous 
test solution detects more esophageal function abnormalities 
than liquid testing alone [13]. High-resolution manometry 
has a higher number of pressure sensors and can measure the 
pressure pattern throughout the entire esophagus [14]. High-
frequency endoluminal ultrasound has also been proposed 
as a means of evaluating motor abnormalities. In ambulatory 
patients, motility disorders, such as achalasia and esophageal 
spasm, have been investigated with this method, since it 
provides clear images of the components of the high-pressure 
zone of the distal and proximal esophagus, though its usage in 
the ICU setting is limited to research purposes only. 

Stomach

The primary gastric functions are mixing and propelling 
food particles at a rate that facilitates the absorption of 
nutrients by enhancing the time they are in contact with the 
mucosa. Two distinct motor functional zones are recognized 
in the stomach: the proximal zone, which includes the fundus 
and the proximal third of the corpus of the stomach acting 
as a reservoir, and the distal zone, comprising the antrum 
and pylorus, which together with the proximal duodenum 
delivers chyme at a metered rate into the absorptive mucosa 
of the small intestine. The gastric reservoir function is mainly 
vagally and intrinsically mediated, implicating the importance 
of the intact function of the vagus for gastric motility. The 
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Figure 1 Causes of motility disorders in the gastrointestinal tract
PAWs, propagated antral waves; MMC, migrating motor complex
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distal stomach mixes the food with the antral contractions 
and regulates the outflow to the duodenum [15]. The gastric 
peristalsis and mixing are induced by slow waves and action 
potentials produced by the interstitial cells of Cajal. They are 
also influenced by hormonal and extrinsic neural signals and 
reflexes (e.g., enterogastric, gastrocolic) [1]. Gastric reservoir 
function and peristalsis occur during and shortly after meals, 
whereas during fasting the main motility pattern that is 
observed is the migrating motor complex.

Gastric motility can be markedly abnormal in critically ill 
patients, resulting in slow and delayed gastric emptying, food 
intolerance, and inadequate nutrition. Delayed gastric emptying 
is the most common gastric dysmotility pattern, in critically ill 
patients and has been associated with increasing severity of 
illness. The main pathophysiological mechanisms underlying 
the delayed gastric emptying in these patients are primary 
motor dysfunction, impaired coordination of the proximal and 
distal stomach, inhibitory feedback in the proximal small bowel, 
and a combination of the above. The impaired proximal gastric 
function is characterized by delayed and excessive relaxation 
and abolition of a dose-dependent increase in proximal gastric 
volume. Furthermore, fundus waves are significantly low, both 
at baseline and during duodenal nutrient infusion. Distal 
stomach dysmotility mainly involves an impaired antro-pyloro-
duodenal response. A prospective case-controlled study has 
demonstrated a quantitative reduction in propagated antral 
waves (PAWs) with markedly abnormal characteristics. PAWs 
in critically ill patients were spread over a shorter distance, were 
more likely to be retrograde, rarely involved the duodenum, and 
in most instances they appeared to be associated with a closed 
pylorus [16,17].

Intrinsic myogenic activity, neural signals from the gastric 
myenteric plexus, parasympathetic and sympathetic nervous 
systems, and several hormones regulate smooth muscle 
activity in the stomach [18]. Common metabolic disorders 
associated with critical illness may induce gastric dysmotility. 
Hyperglycemia (glucose >140 mg/dL) has been associated with a 
significant reduction in gastric duodenum and jejunum motility. 
Hyperglycemia-induced gastric dysmotility is characterized by 
a reduction of phase II migrating motor complex waves [19]. 
Hypoxia and hypercapnia induce a significant decrease in 
gastric tone and motility, effects that are probably mediated by 
both arterial chemoreceptors and direct metabolic effects of 
hypoxia in muscle cells and enteric neurons.

Delayed gastric emptying has also been attributed to factors 
related both to the underlying disease that led to critical illness 
and to specific therapeutic interventions. Delayed gastric 
emptying is more frequently present in the elderly and in patients 
with brain and spinal cord injury. Up to 50% of mechanically 
ventilated patients and 80% of patients with intracranial 
hypertension will present delayed gastric emptying [20-22]. 
An additional factor for GI dysmotility is the administration of 
inotropes (dopamine, adrenergic agonist), sedatives and opiates. 
Propofol has been reported to be an independent predictor 
of gastric feeding intolerance, whereas there are conflicting 
results for the use of opioids  [23,24]. Several studies suggest 
that hormones secreted by the GI tract may be implicated in 
the regulation of GI motility, metabolism, mucosal growth 

and immune function [25]. Ghrelin, an orexigenic hormone, 
has been shown to accelerate gastric emptying when given 
exogenously. Critically ill patients have been reported to have a 
more than 50% reduction in ghrelin’s plasma levels, suggesting 
that ghrelin probably contributes to delayed gastric emptying, 
weight loss, and decreased appetite in critically ill patients [26]. 
Increased levels of cholecystokinin and peptide YY, which both 
typically slow gastric emptying, have also been reported in the 
acute phase of critical illness [27]. Recent evidence suggests that 
gastric motility is mainly regulated by the hormone motilin. 
In healthy subjects, motilin accelerates gastric emptying by 
inducing anterograde contractions in the stomach. Motilin 
plasma levels increase cyclically every 90-120 min during the 
interdigestive fasting period, and this cyclical release of motilin 
disappears after ingestion of a meal. These cyclical peaks 
of plasma motilin are synchronized with strong peristaltic 
contractions initiated from the stomach and migrating to the 
duodenum and small intestine (phase III activity). Although 
fasting motilin plasma concentrations have been shown to be 
similar in critically ill patients and healthy subjects, plasma 
motilin levels are significantly higher in the patients during 
nutrient infusion. Furthermore, in critically ill patients there 
is an inverse relationship between the peak increase in plasma 
motilin concentrations and the peak change in proximal gastric 
volume induced by duodenal nutrient stimulation—a finding 
that may explain the persistence in interdigestive GI contractile 
activity and the impaired proximal gastric relaxation during 
enteral feeding in these patients [28].

Gastric dysmotility in critical illness may be assessed using 
both direct and indirect methods; in general, the preference 
of the method depends on the requirements of the physician/
investigator. Intermittent measurement of gastric residual 
volumes (GRVs) is the most common practice for evaluation 
of gastric motility and feeding tolerance in ICU patients 
receiving enteral feeding. However, despite its widespread use, 
the utility and the significance of GRVs remain controversial, 
as substantial evidence is lacking regarding the correlation 
between GRV and gastric emptying. Moreover, this practice 
is deficient in standardization and is exceedingly affected by 
patient positioning, technique, tube location and diameter, 
the use of prokinetic drugs, and the composition of the liquid 
nutrient. In an observational study, 25% of ICU patients with 
GRV >150 mL—considered a cutoff for the interruption 
of enteral feeding in many ICUs—had normal gastric 
emptying [29]. Furthermore, regular GRV monitoring seems 
to be the main reason for discontinuation of the enteral 
nutrition [30]. A randomized study (NUTRIA), showed that 
the absence of gastric volume monitoring was not inferior 
to routine residual gastric volume monitoring regarding 
ICU-related infections, diarrhea, duration of the mechanical 
ventilation, length of ICU stay and mortality rates [31,32]. 
Additionally, several randomized controlled trials showed 
that a lower GRV cutoff was no safer than a higher cutoff. 
Consequently, the 2006 SCCM/ASPEN guidelines raised 
the GRV target to <500 mL. More recently, two randomized 
controlled trials concluded that it was safe to stop checking 
GRVs  entirely  [33,34]. In the light of this evidence, SCCM/
ASPEN currently recommend the elimination of GRVs 
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completely from routine care. GRVs should probably be 
monitored only in high-risk patients (e.g., abdominal surgery 
patients) [35]. In the research setting, particularly when 
studying smaller cohorts, GRVs are too imprecise, so usually 
direct or indirect methods are used (Table 1). Indirect tests, 
such as carbohydrate absorption (3-OMG) or radio-isotope 
breath tests (13CO2), are minimally invasive and have modest 
intra-subject variability. They are useful when studying 
the effect of an intervention thought to have a potent effect 
on gastric emptying in larger cohorts, particularly when 
researchers use a crossover design. The breath test is based 
on the detection of 13C-octanoate in the exhaled air following 
the consumption of a 13C-octanoic-acid–labeled test meal. 
The 13C-labeled substrate is absorbed in the duodenum, 
metabolized in the liver, and excreted as breath 13CO2. This 
test correlates gastric emptying with the 13CO2 enrichment of 
breath that can be measured at regular intervals over a 3-4-h 
period [36]. Ghoos et al have reported an excellent correlation 
between the gastric emptying parameters determined by the 
breath test and scintigraphy in healthy subjects [37]. However, 
in ICU patients with multi-organ dysfunction, the accuracy of 
the method is significantly low.

The paracetamol absorption test (PAT) is an alternative 
indirect method of assessing gastric emptying through peak 
plasma concentrations of paracetamol and can be easily 
performed in the ICU setting. Paracetamol is absorbed 
quickly and completely by the small intestine; hence, rapid 
gastric emptying is correlated with early peak concentrations 
of paracetamol [38]. A significant correlation between PAT 
and scintigraphy has been reported regarding the evaluation 
of gastric emptying. PAT is contraindicated in patients with 
hypersensitivity, hepatic or renal dysfunction, because of the 
increased risk of toxicity.

Ultrasonography is a noninvasive method that has 
recently been introduced for the evaluation of gastric 
emptying, antral wall motion, transpyloric flow and gastric 
accommodation [39]. Studies have shown high correlation 
in t1/2 liquid emptying time between ultrasonography and 
scintigraphy  [40,41]. However, the accuracy of this method 
depends on the experience and skills of the operator and so far 
it lacks validation in critically ill patients [42].

For studying the effect of a less potent gastrokinetic drug, 
for a parallel design study, or when more precise measurement 
is required, direct tests, such as scintigraphy, are more suitable 
and remain the gold standard. Gastric scintigraphy evaluates 
gastric emptying by measuring the gastric transit of a radio-
labeled meal with a gamma camera. Nevertheless, the feasibility 
of scintigraphy in the assessment of critically ill patients is 
limited, as it is time-consuming (average duration of 2-4 h) and 
necessitates the transportation of patient outside the ICU [43].

Magnetic resonance imaging is a newer method that 
has been used to measure gastric emptying [44] and 
accommodation [45]. Gastric emptying is measured after 
administration of a liquid meal containing gadolinium tetra-
azacyclododecane tetra-acetic acid. It is a noninvasive test 
but has significant limitations, such as the transfer of the ICU 
patients, the cost, and the fact that it can only be performed 
with the patient in a supine position, which is a drawback for 
gastric emptying, especially of liquids [46]. Gastric motility 
recording electrogastrography has been used to evaluate the 
basic electrical activity of the stomach, but it is impractical 
in the ICU setting because of the prolonged recordings [47]. 
Manometry has been employed in ICU patients to measure 
gastric antrum, proximal and distal duodenum pressures [48], 
whereas barostat methods have not been used in trials.

Table 1 Diagnostic methods of gastrointestinal dysmotility in critically ill patients

Gastrointestinal 
part

Method Applications  Clinical syndrome

Esophagus Liquid-esophageal manometry
High resolution manometry
Multichannel intraluminal impedance
High frequency endoluminal ultrasound

Intraluminal pressures
Intraluminal pressures
Esophageal transit
Clear images of sphincters

Esophageal dysmotility
Esophageal dysmotility
Esophageal dysmotility
Esophageal dysmotility
(achalasia and esophageal spasm)

Stomach Gastric residual volumes
Scintigraphy
Paracetamol absorption test
Radioisotope breath tests (13CO2)
Carbohydrate absorption (3-OMG)
Ultrasonography
Magnetic resonance imaging
Gastric motility recording electrogastrography
Wireless motility capsule 

Gastric emptying
Gastric emptying
Gastric emptying
Gastric emptying
Gastric emptying
Gastric volumes and contractions
Gastric emptying
Gastric wall electrical activity
Gastric emptying

Delayed gastric emptying
Delayed gastric emptying
Delayed gastric emptying
Delayed gastric emptying
Delayed gastric emptying
Delayed gastric emptying
Delayed gastric emptying
Delayed gastric emptying
Delayed gastric emptying

Small intestine Lactulose breath hydrogen test
Manometry
Wireless motility capsule

Small intestinal transit time
Intraluminal pressures
Small intestinal transit time

Paralytic ileus
Paralytic ileus
Paralytic ileus

Colon 13C- (and 14C)-substrate breath tests
Scintigraphy
Plain abdomen radiography

Orocecal transit
Colonic transit
Colon dilation 

Decreased colon contractions
Decreased colon contractions
Ogilvie’s syndrome
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Small intestine

Normally the primary motility functions in the small 
intestine are peristalsis, segmentation, and the migrating motor 
complexes during fasting periods. Motility function in the small 
intestine is controlled by myogenic characteristics, extrinsic and 
intrinsic nerve circuits, interstitial cells, hormones, and reflexes 
mediating the central nervous and immune system. The enteric 
nervous system, and mainly the myenteric plexus, seems to be 
the dominant regulator of the small intestine. The pathogenesis 
of small intestine motility disturbances in critical illness remains 
mostly uncertain. Sepsis overall slows upper GI transit and 
decreases intestinal contractility by causing dysfunction of 
small bowel muscularis. Excessive fluid administration has been 
demonstrated to cause intestinal edema, which may contribute 
to small bowel dysmotility [49]. Small intestine dysmotility may 
have a significant impact on critically ill patients’ outcomes, since 
previous studies have shown that it influences nutrient and drug 
absorption rates  [50-52]. Moreover, intestinal stasis has been 
linked to bacterial overgrowth, potentially leading to bacterial 
translocation, systemic inflammatory response syndrome, 
sepsis, and multiple organ dysfunction syndromes. The most 
common clinical manifestation of small intestine dysmotility in 
critically ill patients is the presence of paralytic ileus.

Several diagnostic methods have been proposed for the 
assessment of small intestine dysmotility. The lactulose breath 
hydrogen test measures small intestinal transit indirectly 
through orocecal transit. This test is based on the fact that 
lactulose, administered orally, cannot be absorbed by the GI and 
is metabolized by colonic bacteria. The hydrogen produced is 
absorbed from the circulation and excreted through the lungs, 
indirectly indicating the orocecal transit [53]. A series of studies 
have shown a good correlation between lactulose breath hydrogen 
testing and scintigraphy when performed simultaneously with 
lactulose in the test meal [54-56]. However, Miller et al showed 
that lactulose directly accelerates small intestinal transit [57]. 
Small bowel manometry has also been used successfully to 
measure small bowel pressure waves in ICU patients.

An alternative novel technique, the wireless capsule 
technology, may be useful for evaluating intestinal motility 
in critical care patients. Measurement of GI motility with 
this technique is accomplished with an ingested radiocapsule 
that measures pressure, pH, and temperature and transmits 
these signals to a receiver outside the body. The method was 
first introduced for the evaluation of motility and transit time 
in ambulatory patients suffering from functional motility 
disorders, such as irritable bowel syndrome, functional 
dyspepsia, and chronic idiopathic constipation. The efficacy 
of the wireless motility capsule in critically ill patients 
was recently evaluated in two prospective studies [58,59]. 
Rauch et al reported a statistically significant delay in gastric 
emptying, intestinal transit and whole-gut transit time in 
a group of critically ill trauma patients. The main advantage 
of the wireless motility capsule in critically ill patients is that 
it provides an evaluation of the motility of the whole gut, 
eliminating the use of multiple methods. However, the presence 
of only one pressure sensor limits its efficacy in the evaluation 
of propagation and contractile forms of GI dysmotility [60].

Colon dysmotility in critical illness

There is limited evidence with regard to colon dysmotility 
in critical illness. During sepsis, the colon has its distinct 
characteristics in comparison with the small bowel, as different 
types of leukocyte infiltrate, and varying levels of inducible 
nitric oxide synthase and cyclooxygenase-2 are expressed. 
Although the amplitude and frequency of both colon and small 
intestine contraction are suppressed during endotoxin injection 
(or cecal ligation and puncture), there may be an anatomical 
explanation for these pathophysiological differences [44].

Although constipation represents the most common 
clinical manifestation of colon dysmotility in critically ill 
patients, colon dysmotility in these patients may rarely present 
in the form of acute pseudo-obstruction. Acute pseudo-
obstruction (ACPO), also referred to as Ogilvie’s syndrome, 
is defined as a clinical syndrome characterized by impairment 
of intestinal propulsion, which may bear a resemblance to 
intestinal obstruction, in the absence of a mechanical cause. 
Acute intestinal pseudo-obstruction may also involve the small 
intestine and most frequently occurs in patients with stroke, 
myocardial infarction, peritonitis, sepsis, and postoperatively 
in orthopedic surgery, cesarean section, cardiovascular or 
lung surgery [61-63]. The pathophysiology underlying ACPO 
remains rather unclear, with the prevailing hypothesis being an 
imbalance in colonic autonomic innervation in the setting of 
other predisposing factors. The clinical hallmark of ACPO is 
the presence of dilation of the colon on a plain radiograph. The 
dilation favorably involves the cecum and the ascending and 
transverse colon, although the left colon, including the rectum, 
may also be affected. The prognosis of acute intestinal pseudo-
obstruction varies with the underlying clinical condition.

Management of GI dysmotility

In the context of the general management of the ICU patient, 
several measures have been proposed for the treatment and 
prevention of gut dysmotility. These include patient posture, 
adjustment of electrolyte imbalances, control of blood glucose, 
appropriate management of catecholamines and drugs used 
for analgosedation, early enteral feeding, and use of prokinetic 
agents (Table 2) [64].

Glucose control

Hyperglycemia has been shown to have a negative effect 
on antral motor activity. Reduced fundic tone, inhibition of 
antral pressure waves and stimulation of pyloric pressure waves 
have been observed with glucose levels above 15  mmol/L. 
Additionally, several studies showed that a high blood glucose 
concentration is a positive predictor of delayed gastric 
emptying. Although evidence is currently lacking regarding the 
effect of hyperglycemia on GI motility in critically ill patients, 
glucose control should be considered as a measure to prevent 
GI dysmotility [65,66].
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Enteral feeding tubes

Enteral nutrition is a conventional method for nutritional 
supplementation in critically ill patients with intestinal failure. 
Percutaneous endoscopic gastrostomy (PEG) is indicated for 
patients with an intact functional GI tract requiring long-
term nutritional support (>30 days) [67]. Feeding tubes can 
be inserted directly into the stomach, endoscopically or under 
radiological guidance. PEG tube insertion has been shown 
to be the most cost-efficient and safe method compared to 
surgical gastrostomy [71]. It has been reported that 13-40% of 
patients with PEG placement experience minor complications, 
such as maceration due to leakage of gastric contents around 
the tube and peristomal pain [68-70]. Serious complications 
have been reported in only 0.4-4.4%, including peristomal 
leakage-associated peritonitis, necrotizing fasciitis of the 
anterior abdominal wall, gastric bleeding, internal organ 
injury, tumor seeding at the PEG site, and death. Post-
pyloric tubes are appropriate for patients with severe GER 
and gastroparesis [88]. Long-term jejunal feeding can be 
achieved endoscopically  with jejunal tubes through the PEG 
and direct percutaneous endoscopic jejunostomy. Retrograde 
dislodgement of the jejunal extension tube, tube obstruction 
and mechanical failure have been described as the most 
common device-related complications [72].

Prokinetic agents

The second therapeutic approach involves the administration 
of prokinetic agents such as metoclopramide, cisapride, and, 
more recently, erythromycin.

Metoclopramide

Metoclopramide is a drug commonly used for its antiemetic 
and prokinetic effects. It is a D2 antagonist—in both the central 

nervous system and peripheral tissues—a 5-hydroxytryptamine 
(5HT) 3 antagonist and 5HT4 agonist. The prokinetic effect is 
pharmacologically caused by the D2 receptor blockade and 
by the 5HT4 agonism [73]. It improves GI peristalsis, while 
increasing gastric emptying and patients’ tolerance of enteral 
nutrition [74,75]. It should be noted that prokinetic agents 
(metoclopramide, domperidone) given either intravenously or 
intramuscularly have been proven to facilitate the post-pyloric 
placement of nasojejunal tubes [76]. Although well-designed 
clinical trials are lacking, current evidence suggests that 
metoclopramide has a moderate prokinetic effect in critically 
ill patients. Compared to erythromycin, metoclopramide 
has a lower prokinetic effect [77]. Concerning the effect of 
metoclopramide in reducing the incidence of ventilator-
associated pneumonia in patients receiving nasogastric enteral 
feeding, two randomized studies failed to prove any positive 
effect [78,79]. The primary side-effects of metoclopramide are 
nausea and extrapyramidal symptoms (dyskinesia, dystonia, 
convulsions, hypertonia, and tremor). Extrapyramidal 
manifestations are very rare (0.003%) and are mainly present 
in patients who require chronic use of metoclopramide.

Erythromycin

Erythromycin is a macrolide antibiotic that increases gastric 
motility by stimulating enteric nerves and smooth muscle 
and triggering a phase of the migrating myoelectric complex. 
Because of that effect, it has been used in diabetics with 
gastroparesis who were unresponsive to other treatment [80]. 
The antral motor effects of erythromycin in humans are 
mediated via different pathways. The induction of a premature 
activity front is mediated through activation of an intrinsic 
cholinergic pathway, while the induction of enhanced antral 
contractile activity may be mediated via a pathway potentially 
involving activation of a muscular receptor. These effects on 
gastric motility have been measured in the past by paracetamol 
absorption (PAT) in critically ill patients [81]. A double-blind, 
randomized controlled trial concluded that erythromycin is 
useful in the short term for delayed gastric emptying. Compared 
to placebo, administration of erythromycin was associated 
with more successful enteral feeding at both 1 and 12 h. No 
significant difference between the two groups was found 24 
h after infusion, suggesting that administration once or twice 
daily may be sufficient to provide the prokinetic effect [82]. 
Similar results were reported in previous studies in critically ill 
patients and trauma patients [83,84]. Prolonged administration 
(>3-4 days) of erythromycin is associated with reduced efficacy. 
Nguyen et al found that by 24 h of erythromycin administration 
successful enteral feeding was achieved in 87% of ICU patients. 
However, the treatment became significantly less effective on 
day 3 (47%), while on day seven only 30% of patients were still 
feeding tolerant [77]. Erythromycin’s effect as a prokinetic agent 
is dose-dependent [85]. Low doses stimulate an antral activity 
front (phase III), which migrates into the duodenum and is 
possibly mediated by activation of an intrinsic cholinergic 
pathway, whereas high doses induce strong contractions of 
the antrum, which are not propagated and thus transit may 

Table 2 Prokinetic drugs used in management of gastrointestinal 
dysmotility

Prokinetic agent Dosage

Metoclopramide 10-20 mg IV, 4-6 hourly  
(5 mg in case of renal failure)

Erythromycin 200 mg or 70 mg IV, 12-hourly 

Naloxone 8 mg, 6-hourly

Tegaserod 6 mg, 12-hourly

Neostigmine 0.4-0.8 mg/h infusion

Insufficient data

Alvimopan 6 mg, 12-hourly

Mitemcinal 10-30 mg, 12-hourly

Domperidone 10-20 mg, 6-hourly

Ghrelin 10 pmol/kg/min infusion

Dexloxiglumide 200 mg, 8-hourly
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be slower [86]. These contractions are possibly mediated via 
a pathway that involves activation of a muscular receptor. 
However, the optimal dosage for accelerating gastric emptying 
in the critical care setting remains uncertain. The recent 
cloning of the motilin receptor may help to clarify the correct 
dose at a molecular level [87]. One concern regarding the use 
of erythromycin as a prokinetic is the possible development 
of resistance to it as an antibiotic agent. Nevertheless, the 
dosage of erythromycin that is usually required to increase 
gastric emptying has no antibiotic effect and the risk remains 
theoretical. Erythromycin may promote cardiac arrhythmias 
through prolongation of the QT interval, including the 
potentially fatal ventricular arrhythmia torsades de pointes [88]. 
QT prolongation is due to the delayed repolarization that is 
thought to be the result of the blockage of human ether-a-go-
go-related gene (HERG) potassium channels [89]. Several risk 
factors are known to increase the risk of torsades de pointes, 
including age, female sex, hypokalemia, history of previous QT 
prolongation or cardiac arrhythmia, structural heart disease 
and poor left ventricular function. The risk of arrhythmias is 
also increased with the concurrent administration of antifungal 
drugs (ketoconazole, itraconazole, fluconazole, astemizole 
and terfenadine), antiarrhythmic drugs (disopyramide, 
procainamide, amiodarone, sotalol, and quinidine), calcium 
channel blockers (diltiazem and verapamil), haloperidol and 
pimozide [90]. However, no serious cardiac toxicities have 
been reported in clinical trials, probably because of the short 
duration of administration [77,91]. Other non-serious adverse 
effects include hypotension, abdominal pain, nausea, vomiting, 
and diarrhea [92,93]. Watery diarrhea is the most common and 
can occur in up to 25% of enterally fed patients. The use of 
erythromycin is contraindicated in patients with myasthenia 
gravis, since it may trigger a myasthenic crisis [94].

Recent studies in critically ill patients support the efficacy 
of a combination of different prokinetics as first-line therapy 
for feeding intolerance. The combination of erythromycin and 
metoclopramide has been shown to achieve the highest efficacy 
of feeding tolerance with the lowest incidence of tachyphylaxis. 
In a double-blind, randomized study, the use of combination 
therapy was significantly more effective than erythromycin 
alone. Combination therapy was also associated with a lesser 
degree of drug tachyphylaxis and up to 60% of patients remained 
responsive at day 7 of treatment [95]. A more recent study 
demonstrated that combined treatment with metoclopramide 
10 mg/6 h and a single low-dose IV erythromycin (10 mg/h) 
best facilitates gastric emptying in critically ill, mechanically 
ventilated patients [96]. Other novel gastrokinetic drugs, 
such as non-antibiotic motilin agonists, ghrelin agonists, or 
cholecystokinin antagonists (e.g., dexloxiglumide), could be of 
interest but have yet to be investigated.

Concluding remarks

GI dysmotility and feeding intolerance are common amongst 
critically ill patients and have been associated with significant 
complications that may lead to increased morbidity and 

mortality. Currently, treatment with prokinetics is considered 
as the first-line therapeutic option, as it may improve gastric 
emptying and nutrition delivery. Novel methods for GI 
motility assessment and management are required to reduce 
the incidence of GI dysmotility-induced complications and 
improve patients’ outcomes.
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