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INTRODUCTION

Carcinoma of the pancreas (PC) is an aggressive dis-
ease with a poor prognosis and an overall 5-year survival
of less than 1%, making it the 4th to 5th leading cause of
cancer-related mortality in the Western world.1 Surgery
remains the only treatment option with a chance for cure,
whereas radiotherapy and/or chemotherapy as well as
newer experimental therapeutic modalities, such as an-
tihormonal therapy or systemic use of anti-pancreatic
cancer cell monoclonal antibodies, have not led to a sub-
stantial improvement in patient survival.2-9

In the last two decades, efforts have been made to
characterize the molecular alterations that are present
in PC, often with the long-term goal of improving the
diagnosis and prognosis of PC patients. A number of gene
mutations, including k-ras proto-oncogene mutations and
p53, p16, and SMAD 4 tumor-suppressor gene mutations,
are frequently present in PC. Moreover, growth factors
(GFs) and their receptors (GFRs) play an important role
in pancreatic tumorigenesis. In addition, clarifying the
role of transcription factors (TFs), which control the in-
itiation and extent of gene transcription, has been the
focus of pancreatic cancer research. The present study
reviews the molecular alterations implicated in the de-
velopment of PC, and includes gene mutations, GFs,
GFRs, as well as TFs that combine and give pancreatic
cancer cells a major growth advantage, resulting in rap-
id tumor progression, resistance to chemotherapy, radi-
otherapy, immunotherapy, and hormone therapy, and
finally poor survival.

A) GENETIC ALTERATIONS

a) Ras mutations in pancreatic cancer

The human ras family includes three proteins, termed
H-ras, N-ras and K-ras, which serve in signal transduc-
tion pathways. They exist in either active or inactive states.
Point mutations of K-ras constitute common alterations
in human cancers, and frequently occur at codons 12,
13, or 61. K-ras point mutations at codon 12 are present
in approximately 85-95%10-11 of PC, with the most fre-
quent amino-acid substitution being a G to A transition.
K-ras mutations result in constitutive activation of the
protein, which subsequently signals via the ras/raf/mi-
togen-activated protein kinase (MAPK) cascade to en-
hance cell proliferation, besides other effects. K-ras
mutations are already present in atypical ductal hyper-
plasia and in a small percentage of chronic pancreatitis
(CP) lesions, suggesting that these mutations occur ear-
ly in the carcinogenesis of PC.11

b) p53 in pancreatic cancer

The tumor suppressor gene p53 is located on the short
arm of chromosome 17 and encodes a 53-kd nuclear
phosphoprotein, which functions as a transcription fac-
tor that triggers cell cycle arrest and/or apoptosis in re-
sponse to DNA damage. The former is achieved in part
by induction of the expression of p21WAF1, an inhibi-
tor of cyclin-dependent kinases at the so-called G1/S cell
cycle checkpoint preceding cell replication. p53 can also
trigger apoptosis in different cell types through not yet
completely understood mechanisms. Up-regulation of
the expression of the proapoptotic Bax protein, a Bcl-2
homologue, and downregulation of cyclin A are two of
the implicated mechanisms. p53 mutations are common
in human cancers (40-60% of all tumors),12-14 and are
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found in 23-61% of pancreatic cancers.15 Overexpression
of mutated p53, which is thought to be caused by en-
hanced stability of the mutated protein, correlates with
tumor stage, tumor size, and lymph node metastasis.16 In
addition, enhanced expression of p53 is associated with
shorter survival of PC patients following tumor resec-
tion.17

c) Other molecular alterations in pancreatic
cancer

1. A recently discovered genetic alteration in PC is the
mutation or deletion of Smad 4 (also termed Delet-
ed in Pancreatic Cancer 4, DPC4). Smad4 mutations
occur in approximately 50% of PCs.18 Smad 4 is in-
volved in the signal transduction pathway of the trans-
forming growth factor-â (TGF-â) family.19 Smad 4
mutations are thought to block the growth inhibitory
effects of TGFâs in PC.

2. p16, which is a cyclin-dependent kinase (CKD) in-
hibitor, is altered in up to 85% of PCs, resulting in
cell cycle progression through Rb retinoblastoma
protein phosphorylation.20

3. The pro-apoptotic Bax gene is often up-regulated in
PC, and enhanced expression correlates with longer
survival, indicating that apoptotic pathways are of
biological significance in PC.21

4. Overexpression of the anti-apoptotic Bcl-2 gene oc-
curs in approximately 50% of human PCs.21 The Bcl-
xL anti-apoptotic gene, which is a member of the Bcl-
2 family, is also overexpressed in 50% of human PCs.22

Bcl-xL is thought to promote tumor progression and
influence survival negatively, possibly by providing PC
cells with a protective effect against naturally occur-
ring or cytotoxic-induced apoptosis.

5. TNF-alpha and Fas ligand-mediated apoptosis is
blocked in PC probably by overexpression of inhibi-
tory mediators or decreased expression of essential
signal components of this pathway in PC cells, which
disrupt the aforementioned apoptotic pathway.23-24

6. The expression of the Id-2 gene, which acts as a dom-
inant negative transcription factor, is increased in PC,
and this increase is associated with decreased differ-
entiation and enhanced proliferation of PC cells. 25

7. KAI1, which is a membrane glycoprotein implicated
in cell-cell interaction, invasiveness and metastasis,
is overexpressed in the early stage of PC, while the
levels of expression are lower in advanced stages and
metastatic PC, suggesting a tumor suppressor func-

tion of this gene in PC.26-27

8. Fragile histidine triad gene (FHIT), which encodes
for a hydrolase, is found on chromosome 3 and is
mutated in 70% of PC cell lines.28

B) GROWTH FACTORS AND GROWTH
FACTOR RECEPTORS

Growth factors are produced by many different cell
types and exert their pleiotropic effects via autocrine and/
or paracrine mechanisms. They are also involved in car-
cinogenesis, where they influence a variety of functions,
including cell proliferation, cell invasion and metastasis,
angiogenesis, local immune functions, and extracellular
matrix formation.

a) The transforming growth factor â (TGFâ)
superfamily and its receptors

The mammalian TGF-â superfamily of pleiotropic
GFs includes the TGF-â family itself (TGF-â1, -â2 and
�â3), the activin/inhibin family, the bone morphogenic
protein (BMP) family, the Vg-1 family and Müllerian
inhibitory substance.29-30 These GFs are usually synthe-
sized as precursors that undergo proteolytic cleavage to
yield biologically active proteins.31-33

TGF-âs signal through the cell surface TGF-â recep-
tors, with serine-threonine-kinase activity. They comprise
three types: the type I (TâRI), type II (TâRII) and type
III (TâRIII) receptors. TâRI and TâRII are important
for signal transduction,33-36 while cell surface expression
of TâRIII modulates the binding of TGF-âs to TâRII.34-

37 PCs overexpress all three TGF-â isoforms, and the over-
expression of any of these isoforms is associated with a
worse prognosis following tumor resection.45 Further-
more, TâRII is also expressed at increased levels in the
human PC cells in comparison with the normal pancre-
as.46-47 However, PC cells are usually resistant to the
growth inhibitory effects of TGFâs.48-50 This might be due
to several genetic and epigenetic alterations, such as low
levels of TâRI48 or mutations of the Smad 4 gene, a mem-
ber of the Smad family of recently identified intracellu-
lar signal transducers of the TGF-â superfamily.38-44 Smad
4, which binds to all pathway-specific Smads, is thought
to be essential for the transcriptional activation of TGF-
â target genes. Smad6 and Smad7,41 which antagonize
the function of pathway-specific Smads, are overex-
pressed in PCs.51-52 In PC cells, this leads to resistance of
TGF-â-mediated growth inhibition while still allowing
for the induction of PAI-1, which might function to en-
hance tumor invasion and metastasis.51-52 In addition, tu-
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mor cell-derived TGF-â may act in a paracrine manner
to enhance angiogenesis and suppress cancer-directed
immune mechanisms. TGF-âs may also act to increase
the expression of adhesion molecules and extracellular
matrix components including fibronectin, collagen and
laminin, thereby enhancing the metastatic potential of
cancer cells.

PCs also markedly overexpress the activin/inhibin âA
subunit and to a lesser extent the âB subunit,53 as well as
BMP2 and its type Ia and type II receptors.54

b) The epidermal growth factor (EGF)
superfamily and its receptors

Epidermal growth factor (EGF), a maintenance fac-
tor for the continuous renewal of the epithelial cell pop-
ulation,55 belongs to a family with many members besides
EGF itself. These include transforming growth factor-
alpha (TGF-á), heparin-binding EGF-like growth fac-
tor (HB-EGF), amphiregulin, betacellulin, epiregulin,
neuregulins and cripto.56-65 All these EGF-related growth
factors share amino-acid homology. The EGF receptor
is a 170 kDa glycoprotein found on the cell surface of a
variety of cell types and characterized by its ligand-de-
pendent tyrosine kinase activity.66 The EGF receptor, also
known as human EGF receptor 1 (HER 1), is closely
related to several other receptors such as HER 2 (c-
erbB2), HER 3 (c-erbB3), and HER 4 (c-erbB4).67-70 The
activated receptors transmit signals through a variety of
intracellular substrates, depending on the cell type, the
ligand, and the participating EGF receptors.56,67-69 A
number of intracellular signaling proteins, such as phos-
phatidylinositol-3 (PI3) kinase, phospholipase C-ã, shc
and GRB2, bind directly to the phosphorylated EGF
receptor.55,71 PI3 kinase has been found to play a role in
cell invasion.72 shc and GBR2 link the EGF receptor to
the SOS/ras/raf-1/MAP kinase pathway,73-74 which results
in phosphorylation of jun and fos nuclear protoonco-
genes, thereby ultimately leading to cell proliferation.75-79

Concomitant overexpression of EGF, TGF-á, EGF
receptor and HER3 has been demonstrated in human
PC in several studies,80-83 indicating that autocrine and
paracrine mechanisms of the receptor-ligand system play
a crucial role in the pathogenesis of PC.82-85 In support of
this hypothesis, transgenic mice overexpresing TGF-á in
the exocrine pancreas show dysplastic changes of the
pancreas, resembling those seen in human PC, and dis-
play progressively increased EGF receptor levels during
the transition from acinar to duct-like transformed cells.86

Furthermore, blockage of EGF receptor-dependent sig-
naling pathways in PC cells leads to decreased anchor-

age-independent growth of these cancer cells.87

c) The fibroblast growth factor (FGF) family and
its receptors

Fibroblast GFs (FGFs) are a family of heparin-bind-
ing polypeptide GFs that activate transmembrane tyro-
sine kinase receptors. They are involved in mitogenesis,
cell differentiation and angiogenesis, and presently con-
sist of at least 14 members.88-93 Acidic FGF (FGF 1 or
aFGF) and basic FGF (FGF 2 or bFGF), the prototypes
of this GF family, and FGF 5, and keratinocyte GF (FGF
7 or KGF), are overexpressed in PC.92,94-95 Signaling by
the FGFs is mediated by a dual-receptor system consist-
ing of four high-affinity transmembrane tyrosine-kinase
FGF receptors (FGFRs) that function as signaling mol-
ecules to transmit the effects of FGFs, as well as by low-
affinity heparansulfate-proteoglycans (HSPGs) that are
devoid of signaling capabilities but inhance ligand pres-
entation to EGFRs.88-93 FGFR-1,96 FGFR-2 and its splice
variant keratinocyte growth factor receptor (KGFR), are
also expressed at high levels in PC cells in vivo.97 Glypi-
can-1, a GPI-anchored protein, which seems to be the
most important co-receptor for heparin-binding GFs, is
overexpressed in a large proportion of pancreatic can-
cers, and its expression occurs predominantly in the PC
cells and in the fibroblasts surrounding the tumor mass.98

Experimental evidence for the importance of FGF
in PC is provided by studies demonstrating that block-
age of FGF receptor-dependent pathways can lead to
decreased tumor growth in vivo in nude mice.99

d) Nerve growth factor (NGF) and its receptors

Nerve growth factor (NGF), a neurotrophic protein
involved in maintenance and differentiation of a variety
of neural cell types,100 has recently been suggested as stim-
ulating tumor growth, cancer cell invasion, and forma-
tion of metastases.101-103 TrkA is the high-affinity recep-
tor for NGF and is an essential component in mediating
NGF signals.104 NGF and TrkA mRNA levels are signif-
icantly increased in PC tissues compared with the nor-
mal pancreas.105 Tumors with high TGF and TrkA ex-
pression levels exhibit more frequent perineural invasion.
Perineural invasion extending to the extrapancreatic
nerve plexus is a histopathologic characteristic which
leads to retropancreatic tumor extension, precludes cur-
ative resection, promotes local recurrence and finally
influences the prognosis of the patient negatively.106-108

However, the mechanisms that contribute to invasion of
pancreatic nerves and to the spread of cancer cells along
nerves are as yet poorly understood. Furthermore, in-
creased NGF and TrkA expression levels have also been
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associated with a higher degree of pain in patients with
PC.105

e) The platelet-derived growth factor (PDGF)
family and its receptors

Platelet-derived growth factors (PDGF) consist of A
and B chains, which are linked via disulfide bonds, form-
ing three isoforms: PDGF-AA, PDGF-AB and PDGF-
BB.109 PDGF stimulates growth and chemotaxis of fibrob-
lasts, smooth muscle cells and other cell types. It also
regulates growth and differentiation of fetal cells and
stimulates wound healing in adults. The PDGF A and B
chains and their receptors are highly expressed in PC tis-
sues compared with the normal pancreas,110 and are
thought to be regulated, at least in part, by TGF-â1.

f) The insulin-like growth factors (IGFs) and
their receptors

The IGF family includes insulin-like GFs type I and
II (IGF-I and IGF-II), which are structurally related to
pro-insulin. IGFs bind to IGF receptors (IGF-I receptor
and IGF-II/M-6-P receptor), IGF-binding proteins
(IGFBPs; IGFBP-1 to �6) and IGFBP-related proteins
(IGFBP-rP-1 to �9).111-113 They are potent mitogens whose
action is determined by the availability of free IGF to
interact with the IGF receptors. The latter are regulated
by the rate between IGF production, IGF clearance, and
the degree of IGF binding to IGFBPs.111 Overexpression
of IGF-I and IGF-I receptor has been demonstrated in
human PC tissues,114 in which the IGF-I/IGF-I receptor
system is believed to act in an autocrine way to control
local cancer cell growth.115 Furthermore, IGF-I stimu-
lates the growth of cultured PC cells, and this enhanced
growth is inhibited by alpha-IR3, a specific anti-IGF-I
antibody, and by IGF antisense oligonucleotides.114

C) TRANSCRIPTION FACTORS (TFs)

TFs are nuclear proteins which play a role in the ini-
tiation and extent of gene transcription, by recognizing
specific DNA sequences at the promoter site of the gene.
They comprise two subgroups: the basal machinery or
general transcription factor group, required for the ini-
tiation of transcription of most genes, and the gene- or
cell-type-specific TF group. Transcriptional deregulation
is an important event in the neoplastic process,116 and
deregulated TF expression has been reported in numer-
ous cancers.117-118 In PC, a number of TFs are implicated
in the ras-mediated activation of transcription, includ-
ing AP-1 (c-jun, c-fos), SRF (p67SRE, p62TCF), ETS
(Elk 1, pointed 1 and 2), NF-IL-6, c-myc, and NF-KB/

Rel.119 c-myc, c-jun and c-fos function as oncogenic TFs,
which are involved in tissue-specific gene expression.120-

121 c-fos/c-jun heterodimers can bind to AP1 recognition
sites, thus enhancing gene transcription, suggesting a
crucial role in the development and progression of PC.122-

124 Finally, p53, as mentioned above, acts as a transcrip-
tion factor that regulates cell cycle and programmed cell
death (apoptosis), through induction of a set of genes
with negative effects on cell growth.125-126

CONCLUSION

Modern molecular biology techniques have contrib-
uted significantly to a better understanding of the patho-
physiological changes in PC. As mentioned in this pa-
per, molecular alterations of a variety of genes, TFs, GFs
and GFRs have been demonstrated in this disease, indi-
cating that these alterations may result in a major growth
advantage of PC cells, which clinically results in fast tu-
mor progression. A better understanding of the molecu-
lar alterations of PC will ultimately lead to improvements
in diagnostic and therapeutic strategies and subsequent-
ly to a better prognosis for patients afflicted with this
deadly disease.
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