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Integrating artificial intelligence (AI) into gastrointestinal (GI) endoscopy heralds a significant 
leap forward in managing GI disorders. AI-enabled applications, such as computer-aided detection 
and computer-aided diagnosis, have significantly advanced GI endoscopy, improving early 
detection, diagnosis and personalized treatment planning. AI algorithms have shown promise in 
the analysis of endoscopic data, critical in conditions with traditionally low diagnostic sensitivity, 
such as indeterminate biliary strictures and pancreatic cancer. Convolutional neural networks can 
markedly improve the diagnostic process when integrated with cholangioscopy or endoscopic 
ultrasound, especially in the detection of malignant biliary strictures and cholangiocarcinoma. AI’s 
capacity to analyze complex image data and offer real-time feedback can streamline endoscopic 
procedures, reduce the need for invasive biopsies, and decrease associated adverse events. However, 
the clinical implementation of AI faces challenges, including data quality issues and the risk of 
overfitting, underscoring the need for further research and validation. As the technology matures, 
AI is poised to become an indispensable tool in the gastroenterologist’s arsenal, necessitating the 
integration of robust, validated AI applications into routine clinical practice. Despite remarkable 
advances, challenges such as operator-dependent accuracy and the need for intricate examinations 
persist. This review delves into the transformative role of AI in enhancing endoscopic diagnostic 
accuracy, particularly highlighting its utility in the early detection and personalized treatment of 
GI diseases.
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Introduction

Gastrointestinal (GI) endoscopy, an integral tool in 
gastroenterology, enables real-time imaging and treatment of 
various GI disorders. Its integration with artificial intelligence 
(AI) holds immense potential for augmenting endoscopy’s 
capabilities, enhancing patient care and outcomes. Early 
detection and personalized treatment are key in managing GI 
diseases, with GI cancers representing a significant portion 
of the global cancer incidence and mortality [1]. Enhanced 
endoscopic performance and quality screening are vital in 
reducing these statistics [2]. While GI endoscopy has advanced 
substantially, challenges remain, such as operator-dependent 
accuracy [3] and the need for detailed examinations. Personalized 
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treatments, considering individual patient differences, are 
essential [4]. AI’s ability to analyze large volumes of endoscopic 
data aids in detecting pathologies, including complex GI and 
liver cancer histopathology [5]. Early AI applications in GI 
endoscopy include tumor detection, staging, lesion pathology 
prediction, and identifying Helicobacter pylori (H. pylori) 
infections [6]. AI also supports personalized treatment by 
assimilating patient-specific data, including genetic profiles, 
to develop tailored treatment plans [7]. One other challenge 
is the accurate diagnosis of indeterminate biliary strictures 
(IDBS) and pancreatic cancer. Conventional methods, such 
as endoscopic retrograde cholangiopancreatography (ERCP) 
with brushing and biopsy, often yield suboptimal results, 
necessitating a multi-disciplinary approach that includes 
advanced endoscopic techniques, such as cholangioscopy and 
endoscopic ultrasound (EUS) . This review explores AI-driven 
techniques in transforming gastroenterology, emphasizing 
early detection and personalized treatment.

AI in GI endoscopy

The past decade has witnessed significant advances in the 
application of AI in GI endoscopy. Early AI systems primarily 
used computer-aided diagnosis (CADx) and computer-aided 
detection (CADe) algorithms. Their role was to identify, 
characterize and differentiate suspicious lesions, such as polyps, 
tumors, ulcers, and areas of dysplasia [8]. These AI systems 
deployed predetermined algorithms to pinpoint deviations 
from “normal” tissue, presenting them to the interpreter. In 
GI endoscopy, the processing speed of CAD algorithms and 
their visual output, i.e., graphics, are paramount—initially, 
computational power was CAD’s main limitation. But the rise 
of faster, more affordable, portable and reliable digital platforms 
has improved CAD’s efficiency [9]. Simultaneously, there have 
been notable advances in machine learning and deep learning 
(DL) methods, paving the way for more refined AI models. 
These AI/machine learning models are instrumental in the 
prevention, diagnosis, management and prognosis of various 
GI lesions, encompassing both premalignant and malignant 
types.

Machine learning allows AI algorithms to function like 
the human brain, refining its performance with every data 
interaction without being explicitly programmed to do so. 
DL, emerging as one of the most promising machine learning 
subsets, empowers AI to reason, discern intricate patterns, 
establish connections, and make decisions using raw data. 
Its structure resembles the human neural network, with an 
input layer, multiple hidden layers, and an output layer. Thus, 
DL offers significantly enhanced capabilities compared to its 
AI predecessors [10]. In supervised learning, techniques such 
as support vector machines, regression analysis, and random 
forests prevail.

Conversely, unsupervised learning adopts principal 
component and cluster analysis methods to detect recurring 
patterns within datasets. Based on these learning paradigms, 
algorithms emulate the human brain’s function, leading to 
artificial neural networks under the machine learning umbrella. 
DL, a machine learning subset, harnesses multiple artificial neural 
networks to analyze datasets and predict outcomes directly. 
Convolutional neural networks (CNN) are another prominent 
neural network in medical imaging. Their interconnected layers 
reflect the workings of the human visual cortex [11].

In gastroenterology, a spectrum of imaging modalities 
is utilized to evaluate the digestive system and pinpoint GI 
tumors. These include histologic sections of GI specimens, 
radiography, and endoscopy. While machine learning is 
a go-to choice for the automated analysis of GI images, 
gastroenterology is open to exploring other AI branches, such 
as natural language processing [12,13]. There may often be a 
synergy between radiomic techniques and machine learning/
DL algorithms. The term ‘radiomics’, introduced in 2012, 
denotes the computational, objective analysis of features 
within radiologic images, shedding light on insights typically 
elusive or challenging to quantify. A fundamental component 
of radiomic evaluations revolves around the analysis of image 
texture attributes [14]. Radiomics and AI share a symbiotic 
relationship, especially since the frequent deployment 
of machine learning strategies in radiomics for pattern 
identification in extensive datasets (Fig. 1) [15].

Esophageal disorders

AI has emerged as a transformative tool for investigating 
Barrett’s disease (BE) and esophageal cancer. A recent study by 
Dumoulin et al has demonstrated the potential of AI systems 
in enhancing the screening and surveillance of BE and early 
esophageal adenocarcinoma, providing a nuanced approach 
to high-quality endoscopy and addressing the challenges of 
esophageal cancer in western societies [16]. Concurrently, 
advances in imaging technology, integrated with AI, are 
revolutionizing the detection and characterization of esophageal 
neoplastic lesions and diagnosing early esophageal squamous-
cell carcinoma and precancerous lesions [17]. Innovations 
in surveillance methods, as explored by Iyer et al, including 
AI-powered approaches, are making strides in identifying 
and predicting dysplasia/adenocarcinoma in BE, with 
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Figure 1 Overview of AI applications in gastrointestinal disorders
AI, artificial intelligence; H. pylori, Helicobacter pylori

emergent innovations spanning efficient sampling methods, 
advanced imaging tools and molecular marker-powered 
approaches [18]. As discussed by Vulpoi et al, DL models 
show promise in diagnosing and managing upper digestive 
tract diseases, including BE. They may also help diagnose and 
manage gastroesophageal reflux disease [19]. Furthermore, 
the establishment of AI models like YOLOv5l, as reported by 
Wang et al, is assisting in diagnosing esophageal squamous-
cell carcinoma and precancerous lesions, thereby enhancing 
diagnostic accuracy and reducing missed cases, which can assist 
junior endoscopists in improving diagnosis [17].

Gastric precancerous lesions and H. pylori infection

Gastric precancerous lesions and H. pylori infection are 
recognized risk factors for gastric cancer (GC). In addressing these 
concerns, the rise of AI, backed by its computational prowess and 
learning capacities, has been marked as a potent asset.

AI algorithms have notably boosted diagnostic precision for 
GI conditions such as early-stage GC. A study by Tang et al is 
has highlighted AI’s diagnostic supremacy over endoscopists, 
particularly in detecting early GC [20]. This emphasizes how the 
judicious deployment of AI in GI endoscopy can equip clinicians 
with the means to identify lesions at earlier stages, elevate 
diagnostic accuracy, and personalize treatments—all converging 
towards optimized therapeutic results for the patient.

Diving into the predictive abilities of AI in the realm of 
endoscopy, Huang et al probed its capability to anticipate 

H. pylori gastritis [21]. Their findings charted a sensitivity 
and specificity of 85.4% and 90.9%, respectively, for 
H. pylori detection. Furthermore, this study shed light on AI’s 
commendable accuracy in predicting gastric atrophy, intestinal 
metaplasia, and the intensity of H. pylori-linked gastritis. 
Most observations hover above 80% accuracy, although no 
specific study provided an exact figure. The evolution of this 
methodology could trim down the resources expended on 
needless biopsies for H. pylori diagnosis. Supporting this 
perspective, a meta-analysis by Bang et al, consolidating 8 
studies and data from 1719 patients, reported that AI attained a 
sensitivity of 0.87 (95% confidence interval [CI] 0.72-0.94) and 
a specificity of 0.86  (95%CI 0.77-0.92) in detecting H. pylori 
infections [22]. Additionally, AI exhibited an 82% accuracy in 
differentiating non-infected gastric mucosa images from their 
post-eradication counterparts [22].

Exploring this domain further, a distinct study encompassing 
school children in Ethiopia employed machine learning to 
discern risk factors and predict H. pylori infection on the basis 
of those risks [23]. The outcomes spotlighted the efficiency 
of machine learning tactics, such as the XGBoost classifier, 
in forecasting H. pylori infection status—a performance that 
surpassed traditional statistical models.

GC

Previous studies have reported that the miss rates for 
GC detection by endoscopists ranged from 4.6-25.8% [24]. 
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Misses in GC detection during endoscopy are influenced 
by tumor characteristics and the endoscopists’ level of 
experience. A  definitive diagnosis of GC currently relies on 
visual examination of whole slide imaging (WSI) pathological 
images, which pose challenges for pathologists, necessitating 
long-term concentration and tedious efforts. While advanced 
image-enhanced endoscopy techniques show potential in 
improving GC detection [25], their widespread implementation 
is hindered by the need for additional training and expertise. 
AI has the potential to assist in automatic, precise, and rapid 
endoscopic detection, as well as histopathological examination, 
addressing these challenges. In GC detection, AI-based image 
classification has achieved a sensitivity of 92.2% in classifying 
endoscopic images [26].

In the field of GC diagnosis, traditional machine-learning 
methods have typically relied on the extraction of handcrafted 
features from images. For instance, Miyaki et al [27] employed 
densely sampled scale-invariant feature transform descriptors 
as local features, and applied a hierarchical k-means clustering 
algorithm to obtain a bag-of-features representation. 
They combined this with a support vector machine-based 
classifier to achieve a cancer detection sensitivity of 84.8% 
and specificity of 87.0%, using a cutoff value of 0.59 [28]. 
However, these approaches faced limitations, including 
reliance on human-selected cutoff values and small data sets. 
DL has emerged as a powerful tool to address these challenges, 
enabling end-to-end training that automates feature extraction 
and classification. Hirasawa et al [26] explored the use of a 
CNN model, specifically a single-shot multi-box detector, for 
detecting GC lesions. The CNN model achieved a sensitivity of 
92.2% for automatic GC diagnosis, outperforming traditional 
machine-learning methods. Luo et al [29] developed a GI AI 
diagnostic system (GRAIDS) based on DL techniques, using 
a large dataset of endoscopic images. GRAIDS demonstrated 
a performance similar to expert endoscopists and showed 
potential in improving the detection of gastric tumors, 
particularly for trainee endoscopists and low-volume hospitals.

DL approaches have been utilized in GC detection on 
WSI. Most successful approaches extract and use small 
image patches instead of the whole image as input. Patch 
selection is a key research area, and existing approaches can 
be categorized based on whether they employ patch- or slide-
level annotations. Li et al [30] proposed GastricNet, a GC 
detection model on WSI. The model combines shallow and 
deep layers to extract multi-scale features and achieve slice-
level prediction by averaging the scores of the top 10 patches 
with the highest cancer probability. Wang et al [31] developed 
a method called recalibrated multi-instance DL (RMDL) for 
detecting GC in WSIs. They used a 2-stage framework, where 
a ResNet-based network was used to generate discriminative 
features and abnormal probabilities for each patch instance, 
and then a local-global feature fusion method and attention-
based approach were used to aggregate the instance 
features. The RMDL method outperformed other multi-
instance learning algorithms in classifying gastric slices into 
cancer, dysplasia and normal states. Machine learning has 
successfully diagnosed and guided treatment decisions for 

patients with GI stromal tumors, as well using integrated 
radiomics analysis [32-37].

Colorectal polyps and cancer

AI-assisted computer vision applications, particularly 
CADe and CADx, have emerged as critical tools for prevention 
of colorectal cancer (CRC) through colonoscopy screening and 
monitoring [30]. These technological advances are not without 
their limitations, as adenoma miss rates (AMR) range between 
6% and 28% [38], mainly because of challenges in lesion 
detection influenced by operator expertise. The pressing need 
to overcome such obstacles has led to a surge in the validation 
and development of these tools, notably for AI-assisted polyp 
detection studies. Here, outcome measures such as adenoma 
detection rate, adenomas per colonoscopy, and AMR serve as 
pivotal assessment parameters.

Although most studies are still in their preliminary stages, 
they exhibit promising clinical relevance. One recent study 
showcased a DL-based AI system’s significant improvement 
in real-time polyp detection rates [39]. Supporting this, a 
systematic review and a meta-analysis found that CADe usage 
during colonoscopy boosted the detection rates of adenomas 
and polyps compared to a control cohort [40]. In a randomized 
controlled trial, CADe was found to reduce AMR and miss 
rates for sessile-serrated lesions, and increase the count of 
adenomas per colonoscopy during the initial sweep [41].

Recent advances in CADe, particularly demonstrated 
by a systematic review and meta-analysis by Hassan et al, 
encompassed 21 randomized trials involving 18,232 patients. 
This study showed that the adenoma detection rate was 
notably higher in the CADe group (44.0%) compared to 
the standard colonoscopy group (35.9%), indicating a 55% 
relative reduction in the AMR [42]. Another systematic 
review and a meta-analysis found that CADe usage during 
colonoscopy boosted the detection rates of adenomas and 
polyps compared to a control cohort [43]. In a randomized 
controlled trial, CADe was found to reduce AMR and miss 
rates of sessile-serrated lesions and increase the count of 
adenomas per colonoscopy [44].

AI-driven CNN models could refine bowel preparation 
quality and enhance polyp detection [45]. Moreover, real-
time polyp identification systems rooted in DL algorithms can 
potentially improve polyp detection and localization during 
colonoscopy sessions [46,47]. Notably, incorporating AI into 
routine colonoscopy can halve the AMR and augment tumor 
detection, even for those under 10  mm, as highlighted in a 
recent global study [48].

On the other hand, in tumor disease diagnosis and 
radiation treatment planning, manual tumor boundary 
delineation is time-consuming, requires expertise, and suffers 
from interobserver variability. However, fully convolutional 
networks, such as SegNet, U-Net, and DenseVNet, have proven 
to be efficient frameworks for semantic image segmentation. 
U-Net, a specialized CNN, and DenseVNet, a fully 
convolutional network, enable precise and quick biomedical 
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image segmentation [49-51]. T2-weighted, dynamic contrast 
enhanced and multiparametric magnetic resonance imaging, 
and computed tomography-based multi-organ segmentation 
methods, often paired with multi-atlas label fusion techniques, 
yield more reproducible treatment area measurements, leading 
to more consistent radiation doses [52]. Some notable trials of 
AI models in colonic polyps and CRC detection are described 
in Table 1 [45-62].

Supplementing the above illustrations, AI’s potential to 
significantly refine endoscopy spans various avenues:

Real-time support: AI stands ready to offer instantaneous 
aid to endoscopists, parsing live endoscopic imagery with 
a velocity that outstrips human cognition. It can highlight 
dubious territories, guiding pivotal decision making [63].

Elevated clinician efficacy: By automating tasks like image 
captures, data extractions, and report generation, AI amplifies 
clinician efficiency during endoscopies [64].

Superior image clarity: AI enhances endoscopic image 
fidelity by bolstering contrast, attenuating ambient noise, and 
discerning nuanced alterations [65].

Inflammatory bowel disease (IBD)

AI has found its use in diagnosing and managing IBD. 
A recent systematic review highlighted the promising technical 
results of AI-assisted endoscopy in IBD, emphasizing its growth 
as a research field and its additional benefits in experimental 
clinical scenarios [66]. The integration of AI with capsule 
endoscopy, as illustrated by Mascarenhas et al, is enhancing the 
future of IBD management, particularly in the investigation of 
obscure hemorrhagic lesions [67]. The current advancement 
of AI in diagnosing IBD from imaging data highlights its 
importance in the coming decades [68]. The feasibility of 
accurately predicting adverse outcomes using complex and 
novel AI models on large longitudinal data sets of patients with 
IBD has been demonstrated by Zand et al, suggesting potential 
applications for risk stratification and implementation of 

preemptive measures [69]. Furthermore, an overview by 
Takenaka et al provides insights into how AI can improve 
clinical practice in endoscopy for IBD, with some components 
already beginning to shape our understanding [70]. The 
proposed 2-tier IBDN classification, as evaluated by Ang 
et al, helps detect the “CRC/high-grade dysplasia” group 
for consideration of proctocolectomy. However, it does not 
differentiate low-grade dysplasia or sporadic adenomas from 
normal mucosa [71]. A  recent study has taken a significant 
step toward enhancing dysplasia detection in patients with 
IBD. The researchers developed the first known model for 
CADe of colorectal lesions in patients with IBD. This model 
was retrained using high-definition white-light endoscopy 
(HDWLE) images and dye-based chromoendoscopy images 
of IBD-associated colorectal lesions. The retrained IBD-
CADe model demonstrated impressive performance metrics, 
including a sensitivity of 95.1% and an accuracy of 96.8% for 
HDWLE. The study concluded that this model represents the 
first step toward developing AI-based endoscopic tools to 
enhance the detection of polypoid and non-polypoid dysplasia, 
potentially reducing CRC rates in patients with IBD. The ability 
to detect lesions as small as 5 mm with 93% sensitivity further 
emphasizes the potential of this AI model in early detection 
and intervention [72].

Pancreato-biliary diseases

Diagnosing IDBS and pancreatic cancer poses significant 
clinical challenges. The differentiation between malignant and 
benign biliary strictures remains difficult, despite advances 
in endoscopic techniques  . Conventional ERCP techniques, 
involving cholangiogram appearance and brush cytology, often 
fail to differentiate reliably between malignant and benign 
biliary strictures because of their limited sensitivity   [73,74]. 
Probe-based confocal laser endomicroscopy (pCLE) represents 
a novel imaging technique offering “optical biopsies” and 
providing in vivo cellular-level architectural information. 

Table 1 Studies demonstrating use of AI in colon cancer and polyp detection 

Author, year [ref.] Key findings

Zhang et al, 2023 [53] Showed potential in distinguishing malignant from benign lesions

Gong et al, 2023 [54] Addressed challenges in differentiating foreground and background in polyp images

Nogueira-Rodríguez et al, 2023 [55] Highlighted the importance of including negative samples to reduce false positives

Sadagopan et al, 2023 [56] Focused on identifying polyps of various sizes and shapes

Gilabert et al, 2022 [57] Developed a multi-platform web application with CNN for polyp detection

González-Bueno Puyal et al, 2022 [58] Enhanced polyp detection using deep learning approaches

Lu et al, 2022 [45] Focused on bowel preparation quality and polyp detection rate

Adjei et al, 2022 [59] Explored the impact of synthetic data on training AI models for polyp detection

Tanwar et al, 2022 [60] Developed a system for detecting and classifying colorectal polyps

Nogueira-Rodríguez et al, 2022 [61] Assessed CNN performance for polyp localization

Jheng et al, 2022 [62] Developed an AI algorithm for detecting colon polyps and identifying normal colon landmarks
AI, artificial intelligence; CNN, convoluted neural networks
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Table 2 Recent trials of use of AI in the diagnosis of malignant biliary strictures and cholangiocarcinoma

Author 
(year) [ref.]

Image type Pathology Classifier Performance metrics 
(accuracy, sensitivity, 
specificity, etc.)

Mascarenhas 
et al (2021) [75]

Cholangioscopy Malignant biliary 
strictures

CNN Accuracy: 95%, Sensitivity: 
94.7%, Specificity: 92.1%, 
Precision: 0.6, F-1 Score: 0.7

Ribeiro et al 
(2021) [76]

Cholangioscopy Intraductal 
papillary 
projections

CNN Accuracy: 99%, Sensitivity: 
99.7%, Specificity: 97.1%

Marya et al 
(2022) [74]

Cholangioscopy Malignant biliary 
strictures

CNN (ResNet50V2) Accuracy: 91%, Sensitivity: 
93.3%, Specificity: 88.2%

Yao et al 
(2021) [77]

EUS Bile duct lesion/
CCA

CNN (ResNet) Accuracy: 90%, Sensitivity: 
89.5%, Specificity: 82.4%

AI, artificial intelligence; EUS, endoscopic ultrasound; CCA, cholangiocarcinoma; CNN, convoluted neural networks

Table 3 Overview of key limitations of AI in digestive endoscopy

Limitation Description

Insufficient temporal context consideration AI algorithms may not effectively consider the temporal context of medical conditions, which 
could affect the accuracy of predictions

Single-source data collection If all training and test datasets are gathered from a single source, there is a risk of limiting 
diversity and introducing bias in the AI’s ability to identify and categorize abnormalities

Generalizability To assess the true effectiveness of any AI system, ongoing, stringent external validation is 
required, using various imaging sources and techniques

Limited usage of CNN models There is a need to expand the usage of CNN algorithms to include other currently available 
models, such as GoogLeNet and a few ResNet, to improve the AI’s effectiveness

Need for high-quality datasets A significant challenge in developing AI systems is the need for high-quality datasets, which 
persists in current clinical practice

Inclusion of low-quality images in datasets Many datasets may include low-quality images, which can increase the likelihood of an AI 
system making a mistaken diagnosis or prediction

Inherent algorithm bias AI can exhibit inherent biases based on the datasets it’s trained on, which could affect the 
accuracy of diagnosis across diverse population sets

Risk of overfitting Overfitting can limit the AI’s performance on new, unseen data, affecting its effectiveness in 
practical applications

Lack of interpretability AI’s “black box” nature can make it difficult to interpret its decisions, potentially challenging 
trust and improvement based on feedback

Vulnerability to image manipulation AI algorithms can be susceptible to perturbations in input data, with alterations such as 
cropping, rotating, or adding noise potentially affecting the output

Static post-training models Post-training, AI models typically do not improve or learn from new data unless re-trained, 
which can prevent the system from adapting to new forms or presentations of medical 
conditions

Limited contextual understanding AI may lack the ability to understand the context crucial in medical diagnostics

Dependence on image quality and preparation The performance of AI can heavily depend on the quality and preparation of images, which 
can vary due to differences in equipment, preparation protocols, and staining methods

Economic and logistic constraints Implementing AI in clinical practice can require substantial investment and personnel 
training, posing a challenge in resource-limited settings

Ethical and privacy concerns Significant ethical and privacy issues are associated with using patient data for AI training, 
particularly in ensuring the anonymization and security of patient data

AI, artificial intelligence; CNN, convoluted neural networks

However, its specificity can be compromised by previous 
endoscopic interventions  . Cholangioscopy, especially with the 
advent of single-operator systems, has significantly advanced 

the diagnostic capabilities for biliary strictures  . Endoscopic-
ultrasound-guided fine-needle aspiration (EUS-FNA) has been 
shown to be more effective than conventional ERCP techniques 



AI in GI endoscopy 7

Annals of Gastroenterology 37

in diagnosing malignant biliary strictures, with higher 
sensitivity and accuracy [73,74]. However, it is crucial to note 
that negative results from these techniques do not completely 
exclude malignancy, given their low negative predictive value  . 
AI can play a transformative role in this context. AI algorithms 
can assist in the analysis of complex imaging data obtained 
from these advanced endoscopic techniques. By integrating 
AI with pCLE, cholangioscopy and EUS-FNA data, it may 
be possible to enhance the diagnostic accuracy for IDBS and 
pancreatic cancer. This integration could lead to more reliable 
differentiation between malignant and benign strictures, 
better informing treatment decisions, and improving patient 
outcomes [73,74].

Cholangiocarcinoma is notoriously difficult to diagnose 
early, since traditional techniques like ERCP have limited 
sensitivity [73]. With its ability to process and analyze complex 
image data at an unprecedented scale, AI presents a viable 
solution to this challenge. Recent studies have shown that 
CNNs, when used in conjunction with cholangioscopy or 
EUS, can significantly improve the accuracy of diagnosing 
malignant biliary strictures and cholangiocarcinoma. For 
instance, CNN with EUS imaging has demonstrated superior 
clinical performance, potentially streamlining the diagnostic 
process and providing real-time, reliable feedback during 
endoscopic procedures. However, the application of AI in 
this context is not without its challenges [73]. Issues such 
as data quality, inconsistency, and the risk of overfitting 
need to be carefully managed to ensure the reliability of AI 
algorithms in clinical settings. Moreover, while the initial 
results are promising, further comparative studies and external 
validations are essential to firmly establish the role of AI in 
the routine diagnostic process. The potential of AI to reduce 
procedure length, enhance diagnostic accuracy and possibly 
negate the need for invasive testing, such as biopsies, is 
significant, particularly for reducing procedure-associated 
adverse events [73]. Some recent trials using AI in pancreato-
biliary disorders are described in Table 2 [74-77].

Limitations

The field of medical diagnostics has a great deal of potential 
for AI, but there are restrictions on how it can be used. One 
of the major limitations is that we cannot completely rely on 
AI; clinical judgment is still essential, as demonstrated by 
inability of algorithms to take contextual information into 
account. Computational errors may also be made worse by the 
issue of automation bias, which occurs when clinicians accept 
the AI’s conclusions even when they are incorrect. Another 
obstacle is the need for more clarity in the data collection 
process. All the training and test datasets were derived from a 
single source, restricting diversity and potentially introducing 
bias in the AI’s diagnosis capabilities. Additionally, the AI’s 
ability to generalize its learned knowledge to new, unseen 
data is challenging, necessitating continuous and stringent 
external validation using various imaging and endoscopy 
sources. Furthermore, there is a need to expand the use of 

CNN algorithms to include currently available models, such as 
GoogLeNet and a few ResNet, to improve the effectiveness of 
the AI. Additional limitations are described in Table 3. These 
limitations underscore the need for cautious optimism and 
continuous development in this promising field.

Concluding remarks

Endoscopy is central to gastroenterology, and AI’s 
integration with various forms of endoscopy, including white-
light imaging, linked color imaging and blue laser imaging, 
holds immense promise. AI can be trained to recognize 
distinct clinical markers in gastric mucosa, enhancing early 
detection and diagnosis. The use of AI in predicting treatment 
outcomes and personalizing interventions, especially in 
gastroenterological conditions, is an active research area. 
Challenges such as data standardization, ownership and 
protection must be addressed, and federated learning may 
offer a solution for privacy-preserving data mining. Despite 
the higher labor and storage costs, creating a globally shared 
database is essential for advancing AI in gastroenterology. 
Future studies should focus on clinically relevant applications, 
large real-world datasets, and improving the “explainability” 
of AI results to clinicians and patients. Collaboration between 
researchers, doctors, and AI professionals will be vital to 
fully realize the potential of AI and multimodal imaging 
in gastroenterology, leading to transformative advances in 
surveillance, diagnosis and therapeutic interventions.
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