Real-time elastography as a noninvasive assessment of liver fibrosis in chronic hepatitis C Egyptian patients: a prospective study

Lamiaa Mobarak¹, Mohammed M. Nabeel², Ehsan Hassan³, Dalia Omran⁴, Zeinab Zakaria⁵
National Hepatology and Tropical Medicine Research Institute; Cairo University, Cairo, Egypt

Abstract

Background Hepatitis C virus is a worldwide problem. Noninvasive methods for liver fibrosis assessment as ultrasound-based approaches have emerged to replace liver biopsy. The aim of this study was to evaluate the diagnostic accuracy of real-time elastography (RTE) in the assessment of liver fibrosis in patients with chronic hepatitis C (CHC), compared with transient elastography and liver biopsy.

Methods RTE, FibroScan and liver biopsy were performed in 50 CHC patients. In addition, aspartate aminotransferase to platelet ratio index (APRI) and routine laboratory values were included in the analysis.

Results RTE was able to diagnose significant hepatic fibrosis (F ≥2) according to METAVIR scoring system at cut-off value of 2.49 with sensitivity 100%, specificity 66%, and area under the receiver-operating characteristics (AUROC) 0.8. FibroScan was able to predict significant fibrosis at cut-off value 7.5 KPa with sensitivity 88%, specificity 100%, and AUROC 0.94. APRI was able to predict significant hepatic fibrosis (F ≥2) with sensitivity 54%, specificity 80%, and AUROC 0.69. There was a significant positive correlation between the FibroScan score and RTE score (r=0.6, P=0.001).

Conclusions Although FibroScan is superior in determining significant hepatic fibrosis, our data suggest that RTE may be a useful and promising noninvasive method for liver fibrosis assessment in CHC patients especially in cases with technical limitations for FibroScan.

Keywords Hepatitis C virus (HCV), liver fibrosis, real-time elastography, transient elastography, liver biopsy, aspartate aminotransferase to platelet ratio index (APRI)

Ann Gastroenterol 2016; 29 (3): 1-5

Introduction

Hepatitis C virus (HCV) is a global disease with serious effects [1]. The highest prevalence of HCV infection (14.7%) is reported in Egypt [2], mostly by genotype 4 (90%) [3]. Liver fibrosis is part of the structural and functional alterations in HCV-related chronic liver diseases (CLD). Moreover, in chronic hepatitis C (CHC), prognosis and management is influenced mainly by the extent of fibrosis [4].

Although liver biopsy remains the gold standard for hepatic fibrosis assessment, it is painful and invasive, with rare but potentially life-threatening complications in addition to some limitations of this technique including interobserver variation and sampling variability which may lead to understaging of cirrhosis [5-7]. Furthermore, liver biopsy cannot be used for mass screening in a country with a very high prevalence of HCV like Egypt.

Limitations of the liver biopsy have motivated research for noninvasive methods for measuring hepatic fibrosis that are less invasive and of equal accuracy [8]. Transient elastography (TE) has emerged as the noninvasive method of reference. It is the most widely used and validated technique that measures liver stiffness based on using elastic shear waves emitted from the vibrator attached to the ultrasound transducer probe. Pulse-echo ultrasound acquisitions follow the shear waves, and the velocity of such waves, directly related to tissue stiffness, is measured. The harder the tissue, the faster the shear wave propagates [8,9]. However, it cannot be applied in obese and
Patients and methods

This prospective study was conducted in 50 CHC patients, recruited from the outpatient clinics of the National Hepatology and Tropical Medicine Research Institute, Egypt. All patients were positive for HCV antibodies and HCV RNA by polymerase chain reaction (PCR). All patients with hepatitis B virus (HBV) co-infection, decompensated liver disease, hepatocellular carcinoma, history of previous antiviral therapy, body mass index (BMI) >30 and presence of absolute contraindication for liver biopsy were excluded from this study. An informed written consent was obtained from all patients according to the 1975 Helsinki Declaration.

All patients were subjected to detailed history, thorough clinical examination, and basic laboratory tests including: complete blood count, AST, alanine aminotransferase, alkaline phosphatase, serum albumin, total bilirubin, INR, α-fetoprotein, hepatitis seromarkers for HCV (anti-HCV) and HBV (HBsAg, anti HBc, and anti-HBs) using ELISA technique. HCV RNA was tested by quantitative PCR. All patients were positive for HCV antibodies and HCV RNA by polymerase chain reaction (PCR). All patients with hepatitis B virus (HBV) co-infection, decompensated liver disease, hepatocellular carcinoma, history of previous antiviral therapy, body mass index (BMI) >30 and presence of absolute contraindication for liver biopsy were excluded from this study. An informed written consent was obtained from all patients according to the 1975 Helsinki Declaration.

All patients were subjected to abdominal ultrasonography and liver stiffness measurements using TE (FibroScan, Echosens, France) and RTE (Hitachi, Hi vision Avius, Linear probe EUP - L 52).

Results

The present study was conducted on 50 HCV patients. Their age ranged from 27-65 years. The mean age was 44.2±12. Demographic features, laboratory data and histopathological features of the included patients are shown in Table 1.

The analysis of the accuracy of RTE, FibroScan and APRI in predicting liver fibrosis in 50 HCV patients is shown in Table 2. At cut-off value 7.5 KPa, FibroScan could diagnose significant fibrosis (F ≥2) with sensitivity 88%, specificity 100%, PPV 100%, NPV 89.3%, and AUROC 0.94 (Table 2, Fig. 1). RTE could diagnose significant fibrosis (F ≥2) at cut-off value 2.49 with sensitivity 100%, specificity 66%, PPV 74.6%, NPV 100%, and AUROC 0.8 (Table 2, Fig. 2). APRI, at cut off value 0.65, could predict significant fibrosis (F ≥2) with sensitivity 54%,
specifity 80%, PPV 72.9%, NPV 63.5%, and AUROC 0.69 (Table 2, Fig. 3). There was a significant positive correlation between the FibroScan score and RTE score ($r=0.6, P=0.001$) (Fig. 4).

Table 1: Demographic features, laboratory data and histopathological features of the included patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>HCV patients Number=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age±SD</td>
<td>44.2±12.3</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>30 (60)</td>
</tr>
<tr>
<td>Female</td>
<td>20 (40)</td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>25.7±4.7</td>
</tr>
<tr>
<td>ALT (U/mL)</td>
<td>53.8±24.9</td>
</tr>
<tr>
<td>AST (U/mL)</td>
<td>50.8±21.6</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>4.1±0.3</td>
</tr>
<tr>
<td>T. Bil (mg/dL)</td>
<td>0.7±0.2</td>
</tr>
<tr>
<td>INR</td>
<td>1.09±0.1</td>
</tr>
<tr>
<td>AFP (ng/dL)</td>
<td>6.6±7.1</td>
</tr>
<tr>
<td>Platelet count (cell/mL)</td>
<td>209×10⁵±64.8×10⁵</td>
</tr>
<tr>
<td>Viral load (IU/mL)</td>
<td>1.08×10⁵ (64-47×10⁵)</td>
</tr>
<tr>
<td>METAVIR (%)</td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>2 (4)</td>
</tr>
<tr>
<td>F1</td>
<td>22 (44)</td>
</tr>
<tr>
<td>F2</td>
<td>13 (26)</td>
</tr>
<tr>
<td>F2-3</td>
<td>4 (8)</td>
</tr>
<tr>
<td>F4</td>
<td>9 (18)</td>
</tr>
</tbody>
</table>

Table 2: Diagnostic accuracy of FibroScan, aspartate aminotransferase to platelet ratio index (APRI), real-time elastography (RTE) compared to histopathology in 50 HCV patients in prediction of significant fibrosis (≥F2)

<table>
<thead>
<tr>
<th>Cut-off value</th>
<th>APRI</th>
<th>FibroScan score</th>
<th>RTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEN (%)</td>
<td>54</td>
<td>88</td>
<td>100</td>
</tr>
<tr>
<td>SPE (%)</td>
<td>80</td>
<td>100</td>
<td>66</td>
</tr>
<tr>
<td>PPV (%)</td>
<td>72.9</td>
<td>100</td>
<td>74.6</td>
</tr>
<tr>
<td>NPV (%)</td>
<td>63.5</td>
<td>89.3</td>
<td>100</td>
</tr>
<tr>
<td>LR (+)</td>
<td>2.7</td>
<td>-</td>
<td>2.9</td>
</tr>
<tr>
<td>LR (-)</td>
<td>0.57</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>ACC (%)</td>
<td>27.4</td>
<td>94</td>
<td>83</td>
</tr>
<tr>
<td>AUC</td>
<td>0.69</td>
<td>0.94</td>
<td>0.8</td>
</tr>
</tbody>
</table>

ACC, accuracy; LR(+), positive likelihood ratio; LR(−), negative likelihood ratio; NPV, negative predictive value; PPV, positive predictive value; PREV, prevalence of the evaluated fibrosis staging; SEN, sensitivity; SPE, specificity; AUC, area under the curve

Discussion

Ultrasonography-based noninvasive approaches are increasingly considered to assess parenchymal stiffness and progression of CLD [21]. FibroScan measures the propagation speed of shear waves [22-24]. RTE captures 2D strain images induced by internal heart beats, and the strain images show progressively increasing patchiness with increasing severity of fibrosis [13,14]. Therefore, it is possible to perform in obese patients or with ascites. In the current study, the diagnostic accuracy of RTE and TE in assessing significant liver fibrosis was compared against histopathology in CHC patients with BMI ≤30.

In CHC patients, prognosis and management strongly depend on the degree of liver fibrosis [4]. Treatment should be initiated promptly in those with severe fibrosis (F3-F4) and should be strongly considered in CHC patients with significant fibrosis (F >2). Our study showed that TE was able to diagnose the presence of significant fibrosis at a cut off value of 7.5 kPa with a sensitivity of 88%, specificity of 100%, PPV 100%, and NPV 89.3%. The overall accuracy was found to be 94% with no
failure of TE was recorded. This high diagnostic performance of TE was probably explained by exclusion of patients with BMI >30 from this study. Likewise, previous studies showed that the AUROCs ranged from 0.79 to 0.83 for the prediction of significant hepatic fibrosis and were over 0.95 for the identification of cirrhosis [25,26].

Other studies reported that TE showed a good diagnostic performance in predicting significant fibrosis, and disease progression to advanced fibrosis and cirrhosis when compared to other noninvasive tests [25,27-30]. Friedrich-Rust et al [29] assessed the overall performance of TE for the diagnosis of liver fibrosis; the AUROCs were 0.84 for significant fibrosis (F ≥2), 0.89 for severe fibrosis (F ≥3), and 0.94 for the diagnosis of cirrhosis (F=4).

RTE had been reported to be useful for assessment of hepatic fibrosis in patients with CHC while is not in patients with nonalcoholic fatty liver disease [15]. In the work of Tatsumi et al (2008), RTE correlated well with liver stiffness measured by FibroScan [31]. In our study, RTE was able to diagnose significant fibrosis (≥F2) with a sensitivity of 100%, specificity of 66%, and an overall accuracy of 83%. Although inferior to TE in determining significant hepatic fibrosis, RTE still showed a highly significant positive correlation with TE (P=0.001). Thus, RTE may be useful for assessing hepatic fibrosis in patients for whom the application of FibroScan may be limited.

FibroScan had some limitations in special patients [32]. Furthermore, examination with FibroScan often requires the use of ultrasonography to find the good window because there is no B-mode and around 20% of the cases, reliable measurements cannot be obtained by TE using the standard M-probe [11]. On the contrary, RTE displays in real time the relative strain of the tissue by measuring its displacement and it can easily find the most appropriate region and capture the value. Better results may be achieved by a combination of FibroScan (a technology based on shear wave propagation) and RTE (a technology based on tissue distortion).

In the current study, APRI at cutoff value 0.65 could predict significant fibrosis (F ≥2) with sensitivity 54%, specificity 80% and AUROC 0.69; at cut-off 0.5 the sensitivity was 65.4% and specificity was 66.7%, and at cutoff 1.5 the sensitivity was 30.8% and specificity of 100%. The diagnostic accuracy of APRI in the current study was lower than previous studies comparing APRI with FibroScan or FibroTest [16,25,33].

Ferraioli et al (2012) suggested that real-time strain elastography can be used in the same way as TE is being used for the assessment of severe fibrosis and cirrhosis, with the benefit of improved assessment of significant fibrosis as no significant difference was observed between AUROCs of TE and real-time SWE for severe fibrosis (0.96 and 0.98, respectively) [34].

In conclusion, although FibroScan is superior in determining significant hepatic fibrosis, our data suggest that

Summary Box

What is already known:

- Noninvasive methods for liver fibrosis assessment as ultrasound-based approaches have emerged to replace liver biopsy
- FibroScan is the most widely used and proved technique that measures liver stiffness based on the propagation speed of shear waves
- Real-time elastography (RTE) is technically different (a technology based on tissue distortion)

What the new findings are:

- The overall diagnostic accuracy of FibroScan was found to be 94%, while in RTE it was 83%
- Although RTE was less than FibroScan in determining significant liver fibrosis, our data suggest that RTE may be a useful for liver fibrosis assessment in chronic hepatitis C patients especially in cases with technical limitations for FibroScan
- There was a significant positive correlation between the FibroScan score and RTE score (r=0.6, P=0.001)
RTE may be a useful and promising noninvasive method for liver fibrosis assessment in CHC patients, especially in cases with technical limitations for FibroScan.

ACKNOWLEDGMENT

All authors would like to thank Dr Mohamed Hassany for his cooperation and paying much effort to regulate the work

References

1. WHO | Hepatitis C. World Health Organization; 2012; (Fact sheet no.164).